BT TILE COPY

STARS
REUSABILITY GUIDELINES

AD-A228 468

April 30, 1290

Contract No. F19628-88-D-0032
Task IR40: Repository Integration

Delivered as part of:
CDRL Sequence No. 1550

Prepared for:

Electronic Systems Division
Air Force Systems Command, USAF
Hanscomb AFB, MA 01731-5000

Prepared by:
IBM Systems Integration Division

800 North Frederick
Gaithersburg, MD 20879

EMENT N
+Approved for public relecsey.
. Disbulicn Uploited .-

i

. Form Approved
-~
REPORT DOCUMENTATICN PAGE OMB N 0188
Puplic ceoorung puraen for this cotlection of tntormanon 1y 2stimatea 1o average 1 hour per respofise, InCILIING the ume JOr reviewing instructions, searcning existing data sources,
gathering and g the cata ded, and compieting ana reviewing the coliection of information. Send comments regaraing this burden estimate or any other aspect of thiy
coliection of inlorMation, inciuaing suggestions 10r reaucing thay 10 Washington » ariers Seraces, Directorate for Information Operations and Reports, 1215 Jeffegson
Dawis Highway, Suite 1204, Arlington, VA 22202-4302. and {0 the Otfice of Management ana Buaget, Pape-work Reduction Project (0704-0138), Washington, 6C 20503,
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
T o memme— = | ApeiT30 1990 ~~——TFinal - -
4. TITLE AND SUBTITLE . 5. FUNDING NUMBERS
i ain e C: F19628-88-D-0032
MMU"
6. AUTHOR(S)
R. Ekman
/_,./
R \\
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES} 8. PERFORMING ORGANIZATION
.. REPORT NUMBER \
IBM Federal Sector Division .
800 N. Frederick Avenue .
Gaithersburg, MD 20879 :
9. SPONSORING/'MONITORING.AQE_&CMYN_NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
- . LT AGENCY REPORT NUMBER
Electronic Systems Division ™.
Air Force Systems Command, USAF
Hanscom AFB, MA 01731-5000 CDRL Sequence No. 1550
11. SUPPLEMENTARY NGTES Y —
; RIS 7/'141‘; "'}"‘7, ! W'ﬁ" WD - J'P-’-'h'
S (“ . 'f ! d
. . iu‘."uﬂﬂ /
123. DISTRIBUTION / AVAILABILITY STATEMENT T——}-12h, DISTRIBUTION CODE

ol

fz. ABSTRACT (Maximum 200 words)
A guide to software reuse using the STARS\Repository. This document contains the,

IBM STARS Repository Guidebook, STARS Repository User's Guide, and STARS Reusabiiity
Guidelines. Each is described below.) 4

IBM STARS Repository Gu;debook: A guide to the STARS Repository, providing high-
level information for all users -- component reusers, component suppliers, and
repository administrators. The Guidebook is organized according to the specific
roles that users perform when using the system.

e -

v

.~ STARS Repository User's Guide! A guide on how to access and use the STARS eposi-
tory. It provides the basic information needed to use the repository software, but
it is not a comprehensive guide to the VAX computer, on which the repository is
built,

TARS Reusability Guidelines. A set of Ada coding guidelines for component develop-

- ment that emphasize reusability. Code that follows these guidelines will be easier
to _reuse on multiple proijec ples are provided illustratin

. . .) 15. NUMBER OF PAGES
14. SUBJECT TERMS guidelines. ‘!,;1“”1' p L \ o 0
STARS, software _reuse,.software é:euse library, Ada coding, 16, PRICE CODE

guidelines, Ada '(lkiglv}

17, SECURITY CLASSIFICATION] 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT -OF THIS PAGE OF ABSTRACT
Unclassified Unclassified " Unclassified UL
NSN 7520-01-280-5500 \ Standard Form 298 (Rev 2-89)
Prascrined by ANST Stg 239.'8

298102

Abstract

This document describes the STARS project Ada coding guidelines, as they relate to reusability.
This document is part of a suite of documents that define the use of the IBM STARS Repository.
The other documents are the IBM STARS Repository GuideBook and the IBM STARS Repository
User's Guide.

Accession For

NTIS GRAZI 2
DTIC TAB a
Unannounced ad
Justification |

v Q0 L Z00r)|
Didtribution/

Availabllity Codes

Avail and/or
Dist Special

¥

Abstract it

Preface

The guidelines in this document apply to all IBM STARS team tasks. In particular, they apply to
Ada code and related documentation as it is admitted to and managed within the IBM STARS
Repository.

These guidelines were originally published in the Consolidated Reusability Guidelines [IBM0380].
Essentially, the guidelines are the same as the guidelines which were collectively established by the
STARS prime contractors in the STARS Q-Increment. Some of the original guidelines were
modified for clarity and depth of definition. A few were eliminated due to experiences and
comments since they were published. The guidelines have also been adjusted to match the metrics
produced by the Repository metric collection tool.

This document was developed by the IBM Systems Integration Division, located at 800 North
Frederick, Gaithersburg, MD 20879. Questions or comments should be directed to the author,
Robert W. Ekman at (301) 240-6431, or to the IBM STARS Program Office.

Preface il

SR Y PR RSP e

mear e ot BN

[STPRCA TGS TPt

Table of Contents

Introductionitiit i i i i it e e ettt et e 1
Coding Style GUIdANCE oottt i i i e i e e 1
Coding Guidelines SUMMATYottt ittt ittt et et et et 2
Coding Guidelinesciiiuiiniiiiiiiiiienerneeeenrneeneeseenennannnens 4
General Design Guidelines & ittt 4
COMMENES L. ottt ittt ittt ettt ittt e et e e 6
Declarations and Typescvv it iiniii it i i ittt e e e 7
DA T 9
157 1T 10
B Lo T 11
Exception Handling tniiiiinii ittt iieiie it 12
Implementation Dependenciesc.i ittt i i i e 15
Input and Outputt e e e e e e 15
Referencescuuviiuniiiiniiiiiiirneestesnsensocassoassaesnsananaeas 18
Glossary Ceeereaeee e Ceeceene e e tetetiits et 21
IndeX ..o i i e i it i et e ettt bt e 23

Table of Contents iv

Introduction

This document presents a set of Ada coding guidelines for component development that emphasize
reusability. By following these guidelines, your code will be easier to reuse across multiple projects
and platforms. Compliance to these guidelines will increase the level of acceptance within the
Repository component evaluation process.

Where appropriate, the following information is provided:

A brief statement of the guideline,

A detailed explanation of its meaning,

A rationale on why the guideline is needed,
Suggestions on how to apply the guideline, and
Examples to illustrate the use of the guideline.

The guidelines were developed through a review of existing documentation and consolidation
within the STARS project. The guideline numbers are derived from cormresponding guidelines in
Consolidated Reusability Guidelines [IBM380). The numbers were originally derived roughly from
the section numbering in the Reference Manual for the Ada Programming Language [ADAS83].

Coding Style Guidance
Col. Whitaker established the STARS program philosophy with the following note:

STARS does not wish to impose an excessive or restrictive style on the programmer. A sensible
attention to readability and portability should be sufficient guide.

STARS style recommendations have to be consistent with the widest variety of operations, including
the thousands of individual shops which may have local ideas, restrictions, and formats enforced by
local methods. STARS, therefore, is not restrictive without compelling reason, especially in those
areas where it possible to machine restructure the code to any desired style.

STARS sets no specific formatting requirements, as a matter of principle. The philosophy is that one
might expect to receive code from various organizations with different ways of doing things. The
government will pretty-prini to Ada LRM style. The only style limitation is that one should not
attempt to encode information (e.g., into the case of identifiers, since Ada is case insensitive), or use
other non-Ada conventions. The government should be able to restructure and extract code
information that is processable by an Ada compiler.

STARS is trying to develop a software technology to be used by the DoD, not just to control a small
group of in-house programmers. The government should not over-specify those things it can easily
adapt. Style guidelines that impose more rigid formatting rules are officious pedantry, but very
common. Conventions like °_TYPE” may be used by some groups; STARS would not interfere, nor
would it attempt to impose them on anyone else.

Arbitrary restrictions to the full capability of Ada (such as unnecessary injunction against “use”) are
inappropriate. Each local shop may, for its own reasons, add additional restrictions, although
STARS would recommend against anything that would limit the expressiveness of Ada. Examples
of oppressive limitations include: no “function” in Ada PDL so it can be mapped to COBOL; no
“if” nested under an “if”, because a tool was derived for a language without “elsif”; forbidding the use
of “use”, thereby denying much of Ada overloading; forbidding the “while” construct in favor of loops
with exit.

Introduction 1

STARS is experimenting with using SGML encoding for program prologue information so it can be
computer processed. This documentation technique is considered separable from "Ada style”, and
would be the subject of other guidelines.

Coding Guidelines Summary

The following is a summary of the reusability coding guidelines. It can be used as a checklist during
code development.

Design

e 1-1-3 Make cohesion high within each component.

e 1-2-1 Make coupling low.

¢ 1-2-2 Document each interface thoroughly.

e 1-3-1 Isolate compiler, operating system and machine dependencies.
e 1-3-2 Make all dependent components reusable.

Comments

e 4-1-1 Make each comment adequate, concise and precise.
e 4-2-1 Document each subprogram with a Subprogram Specification Comment Block.

Declarations and Types

General

e 5-1-1 Avoid anonymous types.

e 5-1-2 Try to use limited private types.

e 5-1-3 Use range constraints on numeric types.

e 5-1-5 Avoid predefined and implementation defined types.
® 5-1-6 Explicitly specify the precision required.

e 5-1-7 Use attributes instead of explicit constraints.

Arrays

e 5-2-1 Explicitly declare a type to use in defining discrete ranges.
¢ 5-2-2 Do not hard code array index designations.

Names

e 6-1-1 Use descriptive identifier names.
e 6-1-2 Keep identifier names less than 80 characters long.
e 6-1-5 Do not overload names from package STANDARD.

Statements

e 7-1-1 Use explicitly declared types for integer ranges in the loop statement.
e 7-2-1 Use elsif for nested if statements.
e 7-3-1 Avoid using the when others clause as a shorthand notation.

Subunits

1-3 Use named constants for parameter defaults.
1-7 Use named parameters if there is more than one parameter.
1-8 Make components complete.
1-9 Write each module so it has high cohesion.
1-10 Use information hiding.

Only put in the specification those declarations that must be seen externally.

Only with compilation units that are really nceded.

Use private and limited private types to promote information hiding.
e 8-2-1 Use descriptive named constants as return values.

8-
8-
8-
8-
8-

Exceptions

Introduction 2

Design

¢ 9-1-6 Never use the when others construct with the null statement.

e 9-1-7 Avoid pragma suppress.

¢ 9-1-8 Handle exceptions as close as possible to where they are first raised.
¢ 9-1-9 Imbed potential elaboration exceptions in a frame.

Propagation

¢ 9-2-1 Do not propagate an exception beyond where its name is visible
¢ 9-2-2 Do not propagate predefined exceptions without renaming them.

Usage
¢ 9-3-2 Do not execute normal control statements from an exception handler.
Documentation

¢ 9-4-1 Document all exceptions which will be propagated.
¢ 9-4-2 Cleatly list in subprogram specification comment blocks all the conditions that
raise exceptions for each operation.

Parameters

¢ 9-5.]1 Be sure that out parameters cannot be undefined.
Implementation dependencies

Design

¢ 11-1-1 Isolate implementation dependencies.
¢ 11-1-3 Avoid optional language features.

Pragmas

e 11-2-1 Avoid using pragmas.
e 11-2-2 If pragmas are used, isolate and thoroughly document them.

® & 6 & 0
— s s bt
oo
R N N
el S ALY

)

Q

5]

(=4

3

o

=]

ad

§=2

[5)

3

o

=

—>

I

=

[e]

=

(=9

(5

g

<]

=

e,

o

=]

-

2

(o3

e}

o

o,

5

o

I

Introduction 3

Coding Guidelines

General Design Guidelines
The following quote sums up the general design issues:

"Reusability is first and foremost a design issue. If a system is not designed with reusability in mind,
component interrelationships will be such that reusability cannot be attained no matter how
rigorously coding or documentation rules are followed [AUSNI85].”

Many of the design guidelines listed here are simply good software engineering principles. However,
the reverse is not necessarily true; simply following good software engineering principles will not
always lead to reusable software [AUSNISS]

Design Guidelines on Generality and Completeness: Designing for generality means making the
component easy to adapt to new situations.

Efficiency should be considered when designing for generality. Often algorithms exploiting special
properties of a problem may be more efficient than algorithms meant to solve a more general
problem.

Completeness means that components should have all functions and operations for current and
future needs. Ideally, each component should contain all of the functionality that can be associated
with such a component,

Obviously, it is impossible to achieve this for any component, but completeness is still a useful goal.
To enhance reusability, components should be made as complete as is practical. Completeness
causes development effort to be spent on features not needed for the current project, but probably
needed on future projects. It should be tempered by development cost, benefits provided by the
component, and likelihood of use.

To achieve generality and completeness, the following guidelines should be followed.

1-1-3 Make Cohesion High Within Each Component: Cohesion is the degree to which the
statements in a component form a coherent whole. The most coherent components do just one
thing, whether it be manipulating an object or performing a function.

Although not cssential for reuse, cohesion is a desirable attribute, because components with high
cohesion are likely to be easier to understand and more tailorable, since related code will tend to
concentrate in one place.

Cohesion is not measurable, except by inspection. According to [STEVE74] there are several layers
of cohesion, listed here from lowest to highest.

Coincidental cohesion The module does tasks that are related loosely or not at all.

Logical cohesion The tasks are related in some logical way.

Temporal cohesion The tasks are related in some way and must be done in the same time
span.

Communicational cohesion All processing elements of a task refer to the same set of input or
output data.

Coding Guidelines 4

Yo aatiane eatant g ladral

AT YONINS HUUHDPE AL YRS SN SOP

Sequential cohesion Output data from one element of the module is input for the next
element.

Functional cohesion All elements of a module are related to performing a single function.

In this scheme, low levels of cohesion should be avoided as much as possible. Middle levels of
cohesion are about as good as high levels. In practice, it is not necessary to improve the cohesion
of a component once it is in the middle range.

[EMBLE87] suggests another way to measure cohesion, by the absence of four strengths --
separable, multifaceted, non-delegation, and concealed. These are defined as follows for abstract
data types (ADTs), but the ideas can be generalized to all reusable components.

separable strength An ADT part has separable strength if the part exports an operator
(function or procedure) that does not use a domain of the ADT it
exports; or the part has a logically exported domain of the ADT that no
operator of the part uses; or the part has two or more logically exported
domains whose operators do not share any of the domains of the ADT.

multifaceted An ADT part has multifaceted strength if it does not have separable
strength, and it exports two or more domains of the ADT. Because it is
not separable some operator must share two or more exported domains.

non-delegation An ADT part has non-delegation strength if it has neither separable nor
multifaceted strength, and it has an operator that can be delegated to a
more primitive ADT.

concealed An ADT part has concealed strength if it has neither separable,
multifaceted, nor non-delegation strength and it has a logically hidden
ADT.

The above definitions are from [EMBLES87).

I-1-4 Make Components as Complete As Possible: Completeness means that components should
have all the functions and operations for current and future needs. Ideally, each component should
contain all the functionality that can be associated with such as component. This is, of course,
impossible in practice, but minimal guidelines can be established. The following guidelines
[SOMMS89] concern specifically object-orientedcomponents. Each such component should include,
either explicitly or implicitly, the following operations.

1. Operations to create and initialize objects of the abstract type. These operations should be
provided explicitly for limited private types, but can be provided implicitly for all other types.

2. Operations to access and to change the value of each attribute of the implemented object or
type.

3. Operations to assign objects of the implemented type and to test for equality. Again, these
should be provided explicitly for limited private types, but can be provided implicitly for all
other types.

4. Test functions for every exception the component can raise.

Furthermore, if the abstract type is a composite type, then the following operations should also be
provided.

1. Operations to add and delete objects from the collection.
2. An iterator, which allows each element to be visited.

3. Functions to obtain information about the attributes of the collection as a whole (such as its
size).

Design Guidelines on Interfaces: Well-defined interfaces are important for reusability. Below are
some guidelines on interface design.

Coding Guidelines 5

1-2-1 Make Coupling Low: Coupling measures how much modules depend on one another. It
depends on the interfaces between modules, the data that pass between them, and the control
relationships. Coupling should be as low or loose as possible. This helps make dependencies both
clear and isolated, thus making components easier to reuse.

According to [STEVE74] there are several levels of coupling, listed here from lowest to highest.

No coupling The modules are independent and do not communicate.
Data coupling Communication is limited to passing simple arguments.
Stamp coupling A variation of ;iata coupling, where part of a data structure is passed, rather
than simple arguments.
Control coupling iIl)ata of a control nature are passed. An example is the passing of a control
ag.

External coupling Modules are tied to specific external environments. For some modules this
may be unavoidable, but environment dependence should be isolated as
much as possible.

Common coupling Modules share data in a global data area.
Content coupling One modules uses the data within the boundary of another module.

In this scheme, coupling should be as low as possible, both for components and for modules
making up components. For some modules it may not be possible to achieve the lower levels of
coupling (no coupling, data coupling). An effort should be made, however, to build modules with
coupling as low as possible in the above scale.

Another way to measure coupling comes from [EMBLES87). In this scheme two compilation units
are visibly coupled if one directly accesses the data structures of the other. They are surreptitiously
coupled if one uses undocumented information about the other’s data structures. Finally, they are
loosely coupled if they are neither visibly nor surreptitiously coupled. In the scheme, the goal is to
make components loosely coupled.

1-2-2 Document Each Interface Thoroughly: Well-documented interfaces are important for building
reusable components. This will allow programmers to easily understand new code and thus lower
the cost of reuse. To thoroughly document interfaces, do the following.

* For generics, explain each formal parameter.
¢ For subprogram, function and task interfaces, explain each parameter.

e If the interface is unusually complex, describe it thoroughly in a document.

Other Design Guidelines

1-3-2 Make All Dependent Components Reusable: A component is not fully reusable unless all the
components it withs are reusable. If a component depends on components that are not reusable,
then there is a potential for portability and tailorability problems. Thus, when submitting a reusable
component to the filtered repository, make sure that all the components it depends on are reusable

as well. That is, make sure that each component that is depended on complies with the guidelines
in this document.

Comments
General Guidclines

4-1-1 Make Each Comment Adequate, Concise and Precise: This will obviously make the
component more readable and thus casier to tailor.

Coding Guidelines 6

Specific Kinds of Comments: These guidelines recommend the following kinds of comments:

e Exception Documentation Blocks and
e Subprogram Specification Comment Blocks.

Exception documentation blocks are described in “9-4-1 Document All Exceptions Which Will Be
Propagated from an Operation in an Exception Documentation Block” on page 14. Subprogram
Specification Comment Blocks are described below.

4-2-1 Document Each Subprogram with a Subprogram Specification Comment Block: A
subprogram specification should clearly state the intended function of the subprogram. To do this,
use a Subprogram Specification Comment Block before each subprogram specification. Give the
name of the subprogram and a description of its function. List specific design details, such as
conditions that raise exceptions. Be sure to include the conditions that will cause predefined
exceptions to be raised and multiple conditions that can cause the same exception.

The comment block could appear with a line of asterisks above or below it. Blank lines might also
be placed above the comment block to act as separators. The comment block or part of it could
also appear in the body as subprogram commentary. The following example shows a Subprogram
Specification Comment Block.

--< STRING_TO_DYN_STRING

~--< Function:

--: D th}urn a dynamic string given an Ada string

- etail:

--< if length (ADA_STRING) > MAX_DYNAMIC_STRING_LENGTH then
--< raise STRING_TOO_LONG

--< if ADA_STRING = NULL then

--< return NULL dynamic string

--< if ADA_STRING /= NULL then

--< return a dynamic string representation of ADA_STRING

Declarations and Types
All the guidelines in this section are designed to improve portability or tailorability.
General Guidelines

5-1-1 Avoid Anonymous Types: An anonymous type is a type without a simple name. Consider the
following example.

Schedule: array (1..3) of Day;
Here the type array (1..5) of Day has no simple name and is thus an anonymous types. There are

only a few cases in Ada where one can create anonymous types; array declarations are one; task
declarations are another. One should avoid anonymous types for several reasons:

e There is no self-cxplanatory type name.

¢ Using such anonymous types makes qualified expressions impossible. There is no type or
subtype to which the programmer can refer in order to qualify the expression.

e Anonymous type impede tailoring because the programmer cannot add assignment statements
like the one below without creating a common type beforehand.
A,B : array (POSITIVE range MIN .. MAX) of COMPONENT;
begin
-- Some code
A := B; -- Produces a compile-time error

end;

Coding Guidelines 7

5-1-2 Try to Use Limited Private Types: Limited private types help hide design details from the
user. Use limited private types when you want neither equality nor assignment exported. If you
want these operators to be exported, then use private types instead.

There is one thing that should be kept in mind when using private or limited private types. When
limited private or private types are exported, the privacy requirement “propagates.” That is, any
type that uses a limited private type in its declaration must itself be limited private. Also, any type
that uses a private type in its declaration must itself be either private or limited private.

For example, consider the following situation.

e Package A uses a limited private type for the DYN_STRING.
type DYN_STRING is limited private;

e Package B uses package A and has a data structure that has DYN_STRING as a
subcomponent as follows.

type NUMBER_RECORD is
record
FIELD1 : A.DYN_STRING;
FIELD2 : STACK;
FIELD3 : INTEGER;
end record;

e Package C uses package B and refers to the record of package B.

type TOTAL is
record
ENTRY : NUMBER_RECORD;
TALLY_LIST : INTEGER;
end record;

Since package A declares DYN_STRING as a limited private type, then package B must define the
NUMBER_RECORD as a limited private type. Package C must use TOTAL as a limited private
type because it refers to the NUMBER_RECORD of package B.

This propagation of limited/non-limited private type requirements could cause major rework for
packages being modified to use components that use private types. Thus, we believe that a reuse
repository should store information on each Ada component on whether the component is based
on limited private, private, or non-private types. This would help users select suitable components.

5-1-3 Use Range Constraints on Numeric Types: This causes the compiler to issue a message if the
range cannot be supported. The range constraints should be meaningful to the application.
[BARNES4]

5-1-5 Avoid Predefined and Implementation Defined Types: Avoid declaring objects of predefined
types such as INTEGER. Predefined types are not likely to be portable because their form can vary
from Ada implementation to Ada implementation.INTEGER, avoid

5-1-6 Explicitly Specify the Precision Required: Each floating point or fixed point type should
explicitly specify the precision, using the delta or digits accuracy definition. This will make clear
any assumptions made about accuracy of calculations.

5-1-7 Use Attributes Instead of Explicit Constraints: Consider the following example from
[NISSE84].

A: array (DISCRETE_TYPE) of F;
for I in DISCRETE_TYPE loop
exit when ACI) < SUM % F'EPSILON;

SUM := SUM + A(I);
end loop;

Coding Guidelines 8

This example assumes that the series A(1) + A(2) + A(3) + ... converges when all terms are
positive. Because the loop depends on F’s model numbers and not on explicit constraints, all Ada
implementations should have the same accuracy.

Guidelines for Arrays

5-2-1 Explicitly Declare a Type to Use in Defining Discrete Ranges: Use explicitly declared types
for discrete ranges. That is, use

type DISCRETE_RANGE is range 1..TABLE_SIZE;
type TABLE is array (DISCRETE_RANGE) of ELEMENT_TYPE;

instead of

type TABLE is array (1..TABLE_SIZE) of ELEMENT_TYPE;

[PAPPASS, p. 28]

This provides several benefits. There will be fewer logic errors when components are tailored,
because the compiler will have already caught them when it checked for type inconsistencies. Also,
the code will be more portable, since the compiler can select the best internal representation for the
numeric type requested by the range declaration.

Unfortunately, using explicitly declared types for integer discrete ranges does not always lead to casy
to read code. Type conversions may be needed to convert among explicitly declared types. The
combination of long type names and required type conversions results in long multi-line Ada
statements that are hard to read. Nevertheless, we believe the advantages of using explicitly declared
types for integer discrete ranges outweigh the disadvantages.

5-2-2 Do not kard code array index designations: Do not hard code array index designations, as
below.

type TABLE is array (1..50) of ELEMENT_TYPE;

Use types or subtypes instead, because the additional declaration will make the code more
self-documenting and thus more tailorable. The upper or lower bound may be an index that will
change at some time. The subtype or type declaration will allow the change to be made once
instead of many times throughout the program.

Names

6-1-1 Use Descriptive Identifier Names: Use descriptive identifier names to promote readability and
self-documentation. Descriptive identifier names make the code clearer. Names should be as long
as necessary to provide the needed information and to promote readability. They should be
considered part of the documentation of the component.

6-1-2 Kecp Identifier Names Less Than 80 Characters Long: Kecp identifiers less than 80 characters
long, because some Ada implementations usc 80 characters as the maximum identifier length.
Furthermore, some display devices are limited to 80 characters, since they lack the ability to format
larger strings.

6-1-5 Do Not Overload Names from Package STANDARD: Ada names predefined in package
STANDARD should not be redefined or ‘overloaded’. [RYMERS86, p. 5] This keeps the reader
from confusing the overloaded names with the names predefined in package STANDARD. There
is an exception to this rule -- it is permissible to overload the names of operators.

Naming Conventions: Besides the above guidelines, there is no specific naming convention for
identifiers in these guidelines. It is assumed that a component retrieval system will exist which will
provide tools to analyze component information. The tools will have powerful analytical
capabilities, so that a naming convention will not improve the analysis. It will only place

Coding Guidelines 9

unnecessary constraints on the programmer. However, if the component retrieval tools are not as
powerful as anticipated, a naming convention may prove useful, and one should be considered.

Statements
Loop Statement J

7-1-1 Use Explicitly Declared Types for Integer Ranges in the Loop Statement: This will improve
portability. If no type name is sgecified, INTEGER is used as the default, which can result in a
discrete range being invalid under some Ada implementations. By using type designations, the logic
can be more independent of the data.

The following example shows a loop range that should not be used.
for I in 1..MAX_NUM_APPLES ...
end.iéop;

Instead, do the following.

type APPLE_COUNT_TYPE is range 1..MAX_NUM_APPLES;
for I in APPLE_COUNT_TYPE loop ...

end.iéop;
If Statement

7-2-1 Use Elsif for Nested If Statements: This reduces the nesting levels of the if statements, giving
the code a clean, uncluttered appearance. It also emphasizes the equal status of each if statement.

The following is an example from [BARNES4, p. 50] of nested if statements.

if ORDER = LEFT then
TURN_LEFT;
else
if ORDER = RIGHT then
TURN_RIGHT;
else
if ORDER = BACK then
TURN_BACK;
end if;
end if;
end if;

The example below shows the above example with elsifs.

if ORDER = LEFT then
TURN_LEFT;

elsif ORDER = RIGHT then
TURN_RIGHT;

elsif ORDER = BACK then
TURN_BACK ;

end if;

Case Statement

7-3-1 Avoid Using the When Others Clause as a Shorthand Notation: The when others clause of
the case statement should not be used as a shorthand to handle all cases that have not been listed.
Instead, explicitly handle each case and omit the when others clause. If the component is later
modified to add more values to the data type, this will call attention to the fact that the new values
are not handled in the case statement. If the when others clause was used, the new data values
would be handled by this clause and the operation on the data might be incorrect.

If there is a long list of conditions to be enumerated, use ranges and vertical bars to simplify listing
all possible values as in the following example:

Coding Guidelines 10

begin
case X is
when AA =>
-- Some stuff
when DD =>
-~ 0Other stuff
when BB..CC | EE..ZZ =>
-- The Other other stuff
end case;
end;

Subunits
General Guidelines

8-1-3 Use Named Constants for Parameter Defaults: Use named constants as parameter defaults
whenever they would help the reader to better understand the code. For example, this

procedure READ (VALUE : out ELEMENT_TYPE;
GROUP : in TAG_GROUP_TYPE :

DEFAULT_GROUP) ;

is easier to understand than this.

procedure READ (VALUE : out ELEMENT_TYPE;
GROUP : in TAG_GROUP_TYPE := 0);

8-1-7 Named Parameters: We do not believe that a set of guidelines should require named
parameter association. This should be a user-selectable option with an intelligent formatter. Until
such formatters are available, the following are some recommendations on the subject.

1. If there is more than one parameter in the called subprogram, then use named parameter
association. This will make the interface clear to the user and make the code self-documenting,
particularly when the component user is not supplying all of the possible parameters.

2. If the called subprogram only has one parameter, then use of named parameters is up to the
coder. The determining factor should be whether use of the named parameter association will
improve readability. Using parameter names in the interface of single parameter function calls
particularly hinders readability.

8-1-8 Make Components Complete: Reusable components should be as complete as practical,
meaning that the component ideally has all operations to manipulate the given object. For
cxample, a stack package should have such operations as PUSH, POP, CLEAR_STACK and
IS_EMPTY. This insures that any stack operation needed in the future will already exist and not
need to be coded.

Admittedly, this guideline cannot be fully realized in practice. Yet the goal of completeness is still
useful as something to strive for.

The guideline is easicr to follow if standard interfaces have been established. For example, there is
a standard interface for stack packages, then it will be trivial to inspect a particular stack package
to tell whether it provides all the required operations.

8-1-9 Write Each Module So It Has High Cohesion: Cohesion is a measure of the degree to which
the statements in a component form a whole. The most coherent components do just one thing,
whether it be manipulating an object or performing a function. Cohesion should be maximized
whenever possible.

One way to achieve high cohesion is to use an object-oriented design. Such a strategy makes it easy
to detect low cohesion. [STDENS86]

8-1-10 Use Information Hiding: There are three guidelines here.

¢ Only place in the specification section those declarations that must be seen externally.

Coding Guidelines 11

o Only with those compilation units that are really needed. Only if the specification needs such
visibility should the context clause appear in the specification; otherwise it should appear in
the body. A tool could be written to catch unneeded withs.

¢ Use private and limited private types to promote information hiding.

The rationale comes from the good software engineering practice of minimizing the amount of
information visible to the outside world.

Guidelines on Subprograms

8-2-1 Use Descriptive Named Constants as Return Values: Named constants should be returned
whenever they would help the reader to understand the code. For example, it is more informative
to return the named constant NOT_FOUND than to return the value -1.

Exception Handling

As stated earlier in this document, good exception handling is important to software reuse for
several reasons.

¢ Components with good error / exception handling have safety built in.
¢ Errors are isolated and well-documented.
¢ The way interfaces work is made clear. There are fewer hidden assumptions.

e The users have the freedom to decide whether to propagate exceptions further, to retry the
operation that raised the exception, to abandon the operation, or to continue regardless.

* Good exception handling makes components more tailorable and thus more reusable.
Exception Handling Design

9-1-6 Avoid Using the When Others Construct with the Null Statement: Use of the null statement
suggests that the exception is not used for an abnormal condition.

begin
loop

raise MISCELLANEOUS_ERROR;

end;
exception
when others =>
null;
end;
-- rest of normal program code

In the above example a raise statement is used to exit the loop and to continue executing normal
control flow. This implies that there never was an abnormal condition.

9-1-7 Avoid pragma SUPPRESS: The Ada Language Reference Manual [ADA83] does not require
that pragma SUPPRESS be implemented. Pragma SUPPRESS does not guarantee that
exceptions will not be propagated to a unit for which exception suppression is in effect. The
execution of a program is erroneous if an exception occurs while pragma SUPPRESS is in effect.

9-1-8 Handle Exceptions as Close as Possible to Where They Are First Raised: This gives the
exception handler access to local data, which can be used to respond to the exception. It also
avoids losing visibility to the exception name.

When an exception is propagated to a scope outside its visibility, its name is lost. The exception
can only be handled by a when others handler. Such exceptions might be unwittingly handled by
a handler that was never intended to handle the exception.

Coding Guidelines 2

Below is an example of an exception handler making use of local data.
package body SEQUENTIAL_ACCESS_METHOD is
CURRENT_RECORD : RECORD_IDENTIFIER := START_OF_FILE;
procedure GET (FILE : in FILE_TYPE;
REC : out RECORD_TYPE) is

VALUE : RECORD_TYPE;
begin

VSAM.VGET(CATALOG => FILE,
INDEX => CURRENT_RECORD + 1,
DATA => VALUE);
éiéeption
when DEVICE_ERROR =>
ERROR_IO.LOG("Error Occurred Reading Record"
amp
4 GET RECORD_IDENTIFIER'IMAGE(CURRENT_RECORD + 1));
en 3
end SEQUENTIAL_ACCESS_METHOD;
9-1-9 Imbed Potential Elaboration Exceptions in a Frame: Unless special provisions are made,

elaboration exceptions are not handled in the unit being elaborated. Consider the following
example.

package ELABORATION_EXCEPTION_PKG is
S : STRING (1..2) := "Causes Constraint_Error";
end ELABORATION_EXCEPTION_PKG;

The Constraint_Error exception that is generated is not handled inside the package; it is propagated
out.

The solution is to imbed potential elaboration exceptions in a frame. To do this, do the following.
e Move declarations to declare blocks inside executable regions,

¢ Do initializations inside executable regions, and

¢ Encapsulate initializations within a subprogram to take advantage of Ada’s strong typing, as
in the following example. 1

with INITIALIZATION_PKG;

package ELABORATION_EXCEPTION_PKG is ‘
S : INITIALIZATION_PKG.NAME_TYPE := INITIALIZATION_PKG.SET_NAME;

end ELABORATION_EXCEPTION_PKG;

package INITIALIZATION_PKG is
subtype NAME_TYPE is STRING(1..2);
function SET_NAME return NAME_TYPE;
-- guarantees no CONSTRAINT_ERROR
end INITIALIZATION_PKG;

Exception Propagation

9-2-1 Do Not Propagate an Exception Beyond Where Its Name Is Visible: Do not propagate an
exception beyond where its name is visible. Otherwise, it can only be handled by a when others
handler.

9-2-2 Do Not Propagate Predefined Exceptions Without Renaming Them: Predefined exceptions
have no corresponding raise statement in the source code, so it is not always obvious that an
exception can be propagated. Predefined exceptions can be raised by many operations, making
them difficult to locate. Renaming predefined expressions makes it casicr to pinpoint the exact
cause of each exception. For example, the predefined exception STORAGE_ERROR might be
propagated as MEMORY_FULL.

Coding Guidelines 13

Use of Exception Handling

9-3-2 Do Not Execute Normal Control Statements from an Exception Handler: Only use exception
handling for abnormal control flow, not for normal control.

Below is an example of poor use of exception handling.

begin
loop
TEXT_IO.GET(DATA_FILE,DATA_VALUE);

end loop;
exception

when TEXT_IO0.END_ERROR(DATA_FILE) =>

P -- execute the rest of the program here
end;

In contrast, the following shows equivalent code without the use of an exception handler.

while not TEXT_IO.END_OF_FILE(DATA_FILE) loop
TEXT_I0.GET(DATA_FILE,DATA_VALUE) ;

end.iéop;
-- execute the rest of the program here

Exception Documentation

9-4-1 Document All Exceptions Which Will Be Propagated from an Operation in an Exception
Documentation Block: An Exception Documentation Block shows which operations raise which
exceptions under what conditions. In this block, describe all the conditions that cause each
exception to be raised, including predefined exceptions. This will help other developers in making
their designs complete.

Be sure to clearly associate each exception with every operation where the exception can be raised.
If the same operation can raise an exception for different reasons, record cach reason separately.

The following is an example of an Exception Documentation Block.

STRING_TOO_LONG : exception;

-- Raised By On Condition

-- INSERT the size of the string with the

-- insertion exceeds MAX_DYNAMIC_

-- STRING_LENGTH

-- REPLACE the size of the string with the

-- replaced part exceeds MAX_DYNAMIC_
- STRING_LENGTH

9-4-2 Clearly List in Subprogram Specification Comment Blocks All the Conditions That Raise
Exceptions For Each Operation: This includes the conditions that will cause predefined exceptions
to be raised and includes multiple conditions that can cause the same exception.

Exception Handling Parameter Usage

9-5-1 Be Sure That Out Parameters Cannot Be Undefined Upon Return from a Subprogram If an
Exception Occurs: Never depend on the value of out parameters or return values when designing
a handler response. When an exception occurs while evaluating the right side of an expression, then
the current value of the variable stays the same. The values of scalar out parameters which are not
updated are undefined. Thus, the exception handler should set the values of scalar parameters
before returning,

Coding Guidelines 14

Implementation Dependencies
Design Considerations

11-1-1 Isolate Compiler, Operating System and Machine Dependencies dependencies: To make
components portable, avoid optional language features and Ada implementation dependencies.
Where this cannot be done, isolate such uses, so users can plug in new versions easily. Document
all such uses. Both encapsulation and documentation will reduce the effort to port a component
to a new implementation.

Write code to ignore details of underlying implementations. Components should be designed
without reference to the surrounding environment. Contact between a component and its
environment should occur through explicit parameters and explicitly invoked subprograms.
[PAPPASS, p. 7]

11-1-3 Avoid Optional Language Features: For example, avoid using

UNCHECKED_DEALLOCATION and UNCHECKED_CONVERSION. These two

procedures are optional and implementation dependent. If you use these procedures, document ;
their use. Environment_Imposed_Restrictions and Compiler_Dependent_Restrictions. :

Pragmas

11-2-1 Avoid Using Pragmas: Pragmas are generally environment dependent. Sometimes, though,
their use may be unavoidable.

Pragma INTERFACE may be needed to specify interfaces with subprograms of other languages.
Pragma ELABORATE may be needed to insure that a program is correctly elaborated no matter
what compiler is used, since elaboration order varies from compiler to compiler. However, take
care that pragma ELABORATE is essential and not needed because the component is overly
complex.

11-2-2 If Pragmas Are Used, Isolate and Thoroughly Document Them: If they must be used, they
should be isolated as much as possible.

Those components which use pragmas should be documented, pointing them out and describing !
their effects. Pragmas. "

For example, use of pragma INLINE in a reusable component should be documented. Its use can
force the user’s code to depend on the body of the reusable component. Since this effect is usually
unexpected, take care to insure that the reuser is aware of the compilation issues caused by it.

Input and Output
General Guidelines

12-1-1 Encapsulate 1/O Uses Into a Separate I/O Package: All input/output utilities should be
isolated into I/O packages. This will make it easy for users to adapt the component to different
machines and operating systems.

Guidelines on Specific I/O Procedures and Functions

12-2-4 Do Not Rely on NEW_PAGE: The Ada language standard does not specify the value of a
page terminator. Thus, the control characters may be non-portable across printers. One solution
1s to always direct output to a file, which can then be filtered and altered to suit the device the
outpr:t is ultimately destined for.

12-2-5 Document Implementation Dependent Procedures: Use of the following procedures could
result in portability problems. Dependencies on such procedures should be documented.
Portability_Restrictions.

e COL -- Depends on the implementation-defined subtype POSITIVE_COUNT.

Coding Guidelines 15

e DIRECT _IO.READ -- Reads from an index whose range POSITIVE_COUNT is
implementation defined. The DIRECT_IO.WRITE procedure could also cause similar
problems.

e ENUMERATION_IO.GET -- Returns an out parameter of the predefined types POSITIVE
or NATURAL to specify the LAST character input. It also has a WIDTH parameter of the
implementation-defined type FIELD.

e FIXED_IO.GET -- Returns an out parameter of the predefined types POSITIVE or
NATURAL to specify the LAST character input. It also has a WIDTH parameter of the
implementation-defined type FIELD.

e FIXED_IO.PUT -- Has a WIDTH parameter of the implementation-defined type FIELD.

¢ FLOAT_IO.GET -- Returns an out parameter of the predefined types POSITIVE or
NATURAL to specify the LAST character input. It also has a WIDTH parameter of the
implementation-defined type FIELD.

e FLOAT_IO.PUT -- Has a WIDTH parameter of the implementation-defined type FIELD.

e GET_LINE -- Retumns an out parameter of the predefined types POSITIVE or NATURAL
to specify the LAST character input.

e INDEX -- Uses an index whose range POSITIVE_COUNT is implementation-defined.

e INTEGER_IO.GET -- Returns an out parameter of the predefined types POSITIVE or
NATURAL to specify the LAST character input. It also has a WIDTH parameter of the
implementation-defined type FIELD.

e INTEGER_IO.PUT -- Has a WIDTH parameter of the implementation-defined type FIELD.
¢ LINE -- Depends on the implementation-defined subtype POSITIVE_COUNT.

e LINE_LENGTH -- Depends on the implementation-defined type COUNT, whose upper
bound varies with each implementation.

e PAGE -- Depends on the implementation-defined subtype POSITIVE_COUNT.

e PAGE_LENGTH -- Depends on the implementation-defined type COUNT, whose upper
bound varies with each implementation.

e SET_COL -- Depends on the implementation-defined subtype POSITIVE_COUNT.
e SET_LINE -- Depends on the implementation-defined subtype POSITIVE_COUNT.
e SET_INDEX -- Uses an index whose range POSITIVE_COUNT is implementation-defined.

e SET_LINE_LENGTH -- Depends on the implementation-defined type COUNT, whose
upper bound varies with each implementation.

e SET _PAGE_LENGTH -- Depends on the implementation-defined type COUNT, whose
upper bound varies with each implementation.

e SIZE -- Uses an index whose range POSITIVE_COUNT is implementation-defined.
[MATTHS7b, p. 2]

Furthermore, using procedures SKIP_LINE and NEW_LINE to skip more than one line at a time
may lead to portability problems, since they depend on the implementation-defined subtype
POSITIVE_COUNT. Skipping one line will not cause any problems; however, skipping multiple
lines may not be portable depending on the constraint set by the Ada implementation.
[MATTHS7b, p. 2]

File Handling

Coding Guidelines 16

12-3-2 Close Files Before a Program Completes: Different Ada implementations handle unclosed
files in different ways. The state of unclosed files after program termination is undefined. To
increase the reusability of a component, close all files before a subprogram terminates normally or
abnormally. Be sure to verify that a file is open before closing it so that the exception
STATUS_ERROR is not raised.

/O of Access Types
12-5-1 Do Not Input or Output Access Types: The effect of I/O of access types is undefined. If
used, it may lead to components that are not portable. To output an object pointed to, output the

object. To output the address of an object pointed to, output the address of the object using
SYSTEM.ADDRESS. [MATTHS87b, p. 1] Document the use of SYSTEM.ADDRESS.

Coding Guidelines 17

PR

References

There are numerous coding guidelines available, particularly for Ada. The following is a list of
references for the STARS reusability coding guidelines.

[ADAS3|

[AHO74]

[AUSNISS]

[BARNES4]

[BENTLSS]

[BOOCHS7|

[EMBLES7]

[EVBSES7]

[IBM0340]

[IBMO0360]

{IBM0370]

[IBM0380]

References

Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A-1983, February, 17 1983.

Aho, A. V., J. E. Hopcroft and J. D. Ullman, The Design and Analysis of
Computer Algorithms, Readding, Mass.: Addison-Wesley, 1974.

Ausnit, Christine, Christine Braun, Sterling Eanes, John Goodenough,
Richard Simpson, Ada Reusability Guidelines, SofTech, Inc., April 1985.

Barnes, J.G.P., Programming in Ada, 2nd edition. Addison-Wesley
Publishers Limited, 1984.

Bentley, Jon, “Programming Pearls,” Communications of the ACM, vol. 28,
no. 7 July 1985.

Booch, Grady, Software Components With Ada. The Benjamin/Cummings
Publishing Company, Inc., 1987.

Embley, David W. and Woodfield, Scott N., “Cohesion and Coupling for
Abstract Data Types.” Proceedings, Sixth Phoenix Conference on Computers
and Communications, Phoenix, Arizona, February 1987.

EVB Software Engineering, Inc., Creating Reusable Ada Software, 1987.

IBM Systems Integration Division, Informal Technical Report on Findings
During the Rebuild of Common Capabilities, CDRL Sequence No. 0340,
February 19, 1989.

IBM Systems Integration Division, Reusability Guidelines, CDRL Sequence
No. 0360, December 17, 1988.

IBM Systems Integration Division, Reusable Component Data Analysis,
CDRL Sequence No. 0370, February 10, 1989.

IBM Systems Integration Division, Consolidated Reusability Guidelines,
CDRL Sequence No. 0380, March 21, 1989.

18

[IBMO0460]

[IBM0520]

[IBMO710]

[MATSUS4|

[MATTHS7a]

[MATTHS7b]

[MCILR68]

[MENDASS]

[NISSES4]

[PAPPASS]

[RACINSS]

[ROSENS7]

[RYMERS6]
[SOMMS9)

[STDENS6]

[STEVE74]

References

IBM Systems Integration Division, Repository Guidelines and Standards,
CDRL Sequence No. 0460, March 17, 1989.

IBM Systems Integration Division, Long Term Configuration Management
Plan for the STARS Repository, CDRL Sequence No. 0520, March 17,
1989.

IBM Systems Integration Division, DTD Definition: Internal
Documentation, CDRL Sequence No. 0710, January 16, 1989.

Matsumoto, Y., “Some Experiences in Promoting Reusable Software
Presentation in Higher Abstract Levels,” IEEE Transactions on Software
Engineering, vol. SE-10 (5), September 1984.

Matthews, E. R., IBM Federal Systems Division Guide for Reusable Ada
Components (Draft), September 17, 1987.

Matthews, E. R., “Observations on the Portability of Ada 1/O”, ACM
SIGAda Letters, vol. VII, no. 5, September/October 1987.

Mcliroy, M. D., “Mass Produced Software Components,” Report on a
conference by the NATO Science Committee, Garmisch, Germany, October
7-11, 1968.

Mendal, Geoffrey O., “Three Reasons to Avoid the Use Clause,” ACM
SIGAda Letters, vol. VIII, no. 1, January/February 1988.

Nissen, John and Peter Wallis, Portability and Style in Ada, Cambridge
University Press, 1984.

Pappas, Frank, Ada Portability Guidelines, SofTech, Inc., March 1985.

Racine, Roger, “Why the Use Clause is Beneficial,” ACM SIGAda Letters,
vol. VIII, no. 3, May/June 1988).

Rosen, J. P., “In defense of the “use’ clause,” ACM SIGAda Letters, vol.
VII, no. 7, November/December 1987.

Rymer, John and McKeever, Tom., The FSD Ada Style Guide, 1986.

"Sommerville, 1., Software Engineering, 3rd. edition, Addison-Wesley, 1989.

St. Dennis, R., P. Stachour, E. Frankowski, and E. Onuegbe, “Measurable
Characteristics of Reusable Ada Software,” ACM SIGAda Ada Letters, vol.
VI, no. 2, March/April 1986.

Stevens, W. P., G. J. Myers, and L. L. Constantine, “Structured design.”
IBM Systems Journal, 1974, no. 2.

19

[UNISYS0340]

References

Unisys Corporation, Draft Technical Report on Reusability Guidelines,
CDRL 0340, February 14, 1989.

20

Glossary

The following terms and definitions describe component attributes and design issues, as used in
these guidelines.

anonymous type: A type without a simple name.
cohesion: A measure of the degree to which the code in a2 module forms a coherent whole.

contact: The contact is the person in the producing company who is the ‘point of contact’ for that
particular part or product. Point of contact refers to the person who is familiar with the product,
and can either answer questions about it, or can refer people to someone who can answer them.

coupling: A measure of how much components or modules depend on each other. Coupling
depends on the interfaces between modules, the data that pass between them, and the control
relationships.

dynamic stack: The stack of calls made at runtime.
exception documentation block: A comment that documents an exception.

frame: An Ada language construct that surrounds an exception handler. A frame can be a block
statement or the body of a subprogram, a package, a task, or a generic.

functional completeness: The idea that components should have all functions and operations
required for current and future needs.

independence: The ability of a component to be used with different compilers, operating systems,
machines and applications than those for which it was originally developed. Independence is closely
related to portability.

maintainability: The ease of modifying a component, whether it be to meet particular needs or to
fix bugs.

order (of an algorithm): A measure of the computational efficiency of an algorithm, expressed in
terms of the frequency of some key operation. For more information, see [AHO74).

overloading: The property whereby Ada literals, operators, identifiers, and aggregates can have
unambiguous alternative meanings.

platform: Platform refers to the architecture for the system for which the product is intended
(hardware, operating system, and Ada compiler). Some products may be intended for several
different platforms. Platforms listed should also indicate whether they are host platforms, target
platforms, or both.

portability: The ability of an application or component to be used again in a different target
environment than the one it was originally built for. The phrase target environment may be defined
broadly to include operating systems, machines, and applications. To be ported effectively,
components may need to be tailored to the requircments of the new target environment. See also
reusability and independence.

reliability: The extent to which a component performs as specified. A reusable component
performs consistently with repeated use and across environments (that is, operating systems and
hardware).

Glossary 21

TN Y T SRS,

reusability: The ability to reuse a software component or to use it repeatedly in applications other
than the one for which it was originally built. In order to be effectively reused, the component
rmay have to be tailored to the requirements of the new application. See also portability.

subprogram specification comment block: A comment block that accompanies a subprogram
specification, giving its name and a description of its function.

tailorability: The ease of modifying a component to meet particular needs. It should be

distinguished from maintainability, which includes tailorability, but also includes the idea of
corrective maintenance (fixing bugs).

Glossary 22

ROV S

Index
A

access types, input / output of 17
accuracy, stating assumptions on 8
anonymous type 7, 21

array index designations 9

arrays, guidelineson 9
assignment, exporting 8

attributes (Ada) 8

C

case statement, guidelines on 10
closing files 17
cohesion 4, 11, 21
cohesion, coincidental 4
cohesion, communicational 4
coheston, functional 5
cohesion, logical 4
cohesion, sequential 4
cohesion, temporal 4
coincidental cohesion 4
COL procedure 15
common coupling 6
communicational cohesion 4
compiler dependencies, isolating 15
compiler-dependent restrictions 15
completeness 4
completeness, functional 11, 21
components, dependent, making reusable 6
concealed strength 5
constants, named, as return values 12
design 12
guidelines on 12
null statement and when others
construct 12
when others construct and null
statement 12
constraints, explicit 8
contact 21
contact, point of 21
content coupling 6

Index

context clause 12
control coupling 6
coupling 6, 21
coupling content 6
coupling, common 6
coupling, control 6
coupling, data 6
coupling, external 6
coupling, stamp 6
coupling, surreptitious 6
coupling, visible 6

D

data coupling 6
declarations, guidelines on 7
declarations, moving inside declare blocks 13
declarations, placement of 11
dependencies, implementation, guidelines
on 15
dependencies, isolating 15
dependent components reusable, making 6
design details, hiding 8
design guidelines 4
gencral design guidelines 4
DIRECT_IO procedures READ and
WRITE 16
dynamic stack 21

E

efficiency 4

frame 13
elsif, guideline on 10
ENUMERATION_IO procedure GET 16
environment-imposed restrictions 15
equality, exporting 8
Exception Documentation Block 7, 14, 21
external coupling 6

23

F

file handling, guidelines on 16

files, closing 17

FIXED_IO procedure GET 16

FIXED_IO procedure PUT 16

floating point types, specifying precision of 8
FLOAT_IO procedure GET 16
FLOAT_IO procedure PUT 16

frame 21

functional cohesion 5

functional completeness 21

G

generality 4

GET procedure in ENUMERATION_IO 16
GET procedure in FIXED_I0 16

GET procedure in FLOAT_IO 16

GET procedure in INTEGER_IO 16
GET_LINE procedure 16

identifier names, conventions on 9
identifier names, descriptive 9
identifier names, eighty character limit on 9
identifier names, guidelines on 9
identifier names, overloading 9
if statement, guidelines on 10
implementation defined types, avoid 8
implementation dependencies, guidelines
on 15
implementation dependent procedures,
documenting 15
implementation details, hiding 8
independence 15, 21
index designations 9
INDEX procedure 16
information hiding 8, 11, 12
initializations, encapsulating within a
subprogram 13
documenting, guidelines on 14
Exception Documentation Block 14
handlers, executing normal control
statements in 14
predefined, renaming 13
propagating beyond where name is
visible 13
propagating predefined exceptions 13
propagating, guidelines on 13
renaming predefined exceptions 13

Index

use of, guidelines on 14

visibility, propagating exceptions 13
initializations, within executable regions 13
input / output of access types 17
input / output packages 15
input / output, encapsulating uses of 15
input / output, guidelines on 15
integer ranges in loop statement 10
INTEGER type, avoid 8
INTEGER_IO procedure GET 16
INTEGER_IO procedure PUT 16
interfaces $
interfaces, documentation of 6
interfaces, standard 11
isolating 15

limited private types 8, 12
LINE procedure 16

lines, skipping 16
LINE_LENGTH procedure 16
logical cohesion 4

loop statement, guidelines on 10

M

machine dependencies, isolating 15
maintainability 21

model numbers 8

multifaceted strength 5

N

named constants as return values 12
named constants for parameter defaults 11
named parameters, guidelines on 11
names, conventions on 9
names, descriptive 9
names, eighty character limit on 9
names, guidelineson 9
names, overloading 9
naming conventions 9
NEW_LINE procedure 16
NEW_PAGE 15
non-delegation strength 5
null statement and when others construct,

exception handling 12

pragma SUPPRESS 12

numeric types, range constraints on 8

24

)

operating system dependencies, isolating 15

optional language features, avoid 15

order of algorithm 21

out parameters and exceptions 14

overloading 21

overloading names from package
STANDARD 9

P

package STANDARD, overloading names
from 9
PAGE procedure 16
page terminator 15
PAGE_LENGTH procedure 16
parameier defaults 11
parameters, named, guidelines on 11
platform 21
platform, definition of 21
point of contact 21
portability 6, 7,9, 15, 21
portability restrictions 15
POSITIVE_COUNT subtype 15
pragma ELABORATE 15
pragma INLINE 15
pragma INTERFACE 15
pragma SUPPRESS 12
elaboration, imbedding in frame 13
handle, where to 12
handling close to where raised 12
where to handle 12
pragmas, documenting 15
pragmas, guidelines on 15
precision, explicitly specify 8
predefined types, avoid 8
private types 8, 12
procedure COL 15
procedure GET in ENUMERATION_IO 16
procedure GET in FIXED_IO 16
procedure GET in FLOAT_IO 16
procedure GET in INTEGER_IO 16
procedure GET_LINE 16
procedure INDEX 16
procedure LINE 16
procedure LINE_LENGTH 16
procedure NEW_LINE 16
procedure PAGE 16
procedure PAGE_LENGTH 16
procedure PUT in FIXED_IO 16
procedure PUT in FLOAT_IO 16
procedure PUT in INTEGER_IO 16
procedure SET_COL 16
procedure SET_INDEX 16
procedure SET_LINE 16
procedure SET_LINE LENGTH 16
procedure SET_PAGE_LENGTH 16

Index

procedure SIZE 16

procedure SKIP_LINE 16

procedure
UNCHECKED_CONVERSION 15

procedure
UNCHECKED_DEALLOCATION 15

procedures READ and WRITE in
DIRECT_IO 16

procedures, documenting implementation
dependent 15

PUT procedure in FIXED_IO 16

PUT procedure in FLOAT_IO 16

PUT procedure in INTEGER_IO 16

R

range constraints on numeric types 8
ranges, discrete 9

ranges, integer, in loop statement 10
READ procedure in DIRECT_IO 16
readability 9

reliability 21

return values 12

reusability 22

S

separable strength 5
sequential cohesion 4
SET_COL procedure 16
SET_INDEX procedure 16
SET_LINE procedure 16
SET_LINE_LENGTH procedure 16
SET_PAGE_LENGTH procedure 16
SIZE procedure 16
skipping lines 16
SKIP_LINE procedure 16
stack, dynamic 21
stamp coupling 6
standard interfaces 11
statements, guidelines on 10
STATUS_ERROR exception 17
STATUS_ERROR 17
strength, concealed 5
strength, multifaceted S
strength, non-delegation 5
strength, separable 5
Subprogram Specification Comment
Block 7, 14, 22
out parameters 14
Subprogram Specification Comment
Block 14
subprogram specification, clearly stating the
intended function 7
subprograms, documenting 7
documenting 7
subprograms, guidelines on 12

subtype POSITIVE_COUNT 15
subunits, guidelines on 11
surreptitious coupling 6
SYSTEM.ADDRESS 17

T

tailorability 6, 7, 22
guidelineson 6
temporal cohesion 4
types, 8
types, access, input / output of 17
types, anonymous 7, 21
types, floating point, specifying precision of 8
types, guidelines on 7
types, implementation defined, avoid 8
types, limited private 8, 12
types, predefined, avoid 8
types, private 8, 12

Index

U

UNCHECKED_CONVERSION 15
UNCHECKED_DEALLOCATION 15

\/

visible coupling 6

\44

when others construct in case statement 10

when others construct, exception handling, null
statement 12

with clause 12

WRITE procedure in DIRECT 10 16

26

STARS

Reusability Guidelines

April 30, 1990

Contract No. F19628-88-D-0032

Task IR40: Repository Integration

Delivered as patt of:
CDRL Sequence No. 1550

Prepared for:

Electronic Systems Division
Air Force Systems Command, USAF
Hanscomb AFB, MA 01731-5000

Prepared by:

IBM Systems Integration Division
800 North Frederick
Gaithersburg, MD 20879

Abstract

This document describes the STARS project Ada coding guidelines, as they relate to reusability. This

document is part of a suite of documents that definc the use of the IBM STARS Repository. The other

dc ments are the IBM-STARS Repository GuideBook and the IBM STARS Repository User’s Guide

Abstract

1

Preface

The guidclines in this document apply to all IBM STARS team tasks. In particular, they apply to Ada code
and related documentation as it is admitted to and managed within thc IBM-STARS Repository.

These guidelines were originally published in the Consolidated Reusability Guidelines IBM0380. Essentially,
the guidelines are the same as the guidelines which were collectively established by the STARS prime
contractors in the STARS Q-Increment. Some of the original guidelines were modified for clarity and depth
of definition. A few were climinated due to expericnces and comments since they were published. The
guidelines have also been adjusted to match the metrics produced by the Repository metric collection tool.

This document was developed by the IBM Systems Integration Division, located at 800 North Frederick,

Gaithersburg, MD 20879. Questions or comments should be dirccted to the author, Robert W. Ekman at
(301) 240-6431, or to the IBM STARS Program Office.

Preface 2

Contents

Abstract . L e e e e e e 1
Preface e e e e e e e e e e e e 2
1. Infroduction \
Coding Style Guidance e 1
Coding Guidelines Summary e e 2
2. Coding Guidelines e 4
General Design Guidelines e 4
Comments: e e e e e e 6
Declarations and Types e 7
Names . . . L e e 10
Statements e e 10
Subunits ... e e e 12
Exception Handling e 13
Implementation Dependencies 16
Inputand Qutput e 17
3. References e 19
4. Glossary . . L. e 21
Index e e e 23

Contents il

1. Introduction

This document presents a set of Ada coding guidelines for component development that emphasize
reusability. By following these guidelines, your code will be casier to reuse across multiple projects and
platforms. Compliance to these guidelines will increase the level of acceptance within the Repository
component evaluation process.

Where appropriate, the following information is provided:

A brief statement of the guideline,

A detailed explanation of its meaning,

* A rationale on why the guideline is needed,

* Suggestions on how to apply the guideline, and
» Examples to illustrate the use of the guideline.

The guidelines were developed through a review of existing documentation and consolidation within the
STARS project. The guidelines are numbered consccutively by topics. The topics correspond roughly and
are defined in the same order as the the section numbering in the Reference Manual for the Ada
Programming Language [ADAS3].

Coding Style Guidance

Col. Whitaker established the STARS program philosophy with the following note:

STARS does not wish to impose an excessive or restrictive style on the programmer. A sensible
attention to readability and portability should be sufficient guide.

STARS style recommendations have to be consistent with the widest variety of operations, including
the thousands of individual shops which may have local ideas, restrictions, and formats enforced by
local methods. STARS, therefore, is not restrictive without compelling reason, especially in those
arcas where it possible to machine restructure the code to any desired style.

STARS scts no specific formatting requirements, as a matter of principle. The philosophy is that
one might expect to receive code from various organizations with different ways of doing things.
The government will pretty-print to Ada LRM style. The only style limitation is that one should
not attempt to encode information (c.g., into the case of identificrs, since Ada is case insensitive), or
use other non-Ada conventions. ‘The government should be able to restructure and extract code
information that is processable by an Ada compiler.

STARS is trying to develop a software technology to be used by the DoD, not just to control a
small group of in-house programmers. The government should not over-specify those things it can
easily adapt. Style guidelines that impose more rigid formatting rules are officious pedantry, but very
common. Conventions like “_TYPE” may be used by some groups; STARS would not interfere,
nor would it attempt to impose them on anyone clse.

Arbitrary restrictions to the full capability ¢f Ada (such as unnccessary injunction against “use”) are
inappropriate. Each local shop may, for its own rcasons, add additional restrictions, although
STARS would reccommend against anything that would limit the expressiveness of Ada. Examples
of oppressive limitations include: no “function” in Ada PDL. so it can be mapped to COBOL; no
“if” nested under an “if,” because a tool was derived for a language without “clsif”’; forbidding the
use of “use,” thereby denying much of Ada overloading; forbidding the “while” construct in favor of
loops with exit.

1. Introduction

STARS is experimenting with using SGML encoding for program prologue information so it can be
computer processed. This documentation technique is considered separable from “Ada style”, and
would be the subject of other guidelines.

Coding Guidelines Summary

The following is a summary of the reusability coding guidelines. It can be used as a checklist during code
development.

Design

* DES-1 Make cohesion high within each component.

» DES-2 Make components as complete as possible.

DES-3 Make coupling low.

DES-4 Document each interface thoroughly.

DES-5 Make all dependent components reusable.

IMP-1 Isolate compiler, operating system and machinc dependencics.

Comments

* COM-1 Make each comment adequate, concisc and precise.
» COM-2 Document each subprogram with a Subprogram Specification Comment Block.

Declarations and Types
General

DEC-1 Avoid anonymous types.

DEC-2 Try to use limited private types.

DEC-3 Use range constraints on numeric types.

DEC-4 Avoid predefined and implementation defined types.
DEC-5 Explicitly specify the precision required.

DEC-6 Use attributes instcad of explicit constraints.

DEC-8 Declare invariants as constants

DEC-9 Initialize variables during declaration

Arrays

* ARR-] Explicitly declare a type to use in defining discretc ranges.
* ARR-2 Do not hard code array index designations.

Namecs

* NAM-1 Use descriptive identifier names.
¢ NAM-2 Keep identifier names less than 80 characters long.
» NAM-3 Do not overload names from package STANDARD.

Statements

» STA-1 Use explicitly declared types for integer ranges in the loop statement.
» STA-2 Exit Basic LOOPs only via Conditional

» STA-3 Use elsif for nested if statements.

» STA-4 Avoid using the when others clause as a shorthand notation.

Subunits

* SUB-1 Use named constants for parameter defaults.

SUB-2 Use named parameters if there is more than one parameter.
SUB-3 Make components complete.

SUB-4 Write cach module so it has high cohesion.

SUB-5 Use information hiding.

L] L] A\ d L d

1. Introduction

2

— Only put in the specification those declarations that must be seen exterally.
— Only with compilation units that are rcally needed.
— Use private and limited private types to promote information hiding.

* SUB-6 Use descriptive named constants as rcturn values.

Exceptions
Design

« EXP-1 Avoid the when others construct with the null statement.
» LEXP-2 Avoid pragma suppress.

» EXP-3 Handle exceptions closc to wherc they are first raised.

» EXP-4 Imbed potential elaboration exceptions in a frame.

Propagation

» EXP-5 Do not propagate an exception where its name is not visible
* EXP-6 Do not propagate predefined cxceptions without renaming them.

Usage
» EXP-7 Do not execute normal control statements from an cxception handler.
Documentation

» EXP-8 Document all exceptions which will be propagated.
* EXP-9 List all Conditions That Raisc Exceptions in Subprogram Specification Comment
Blocks

Parameters
» EXP-10 Ensure that out parameters cannot be undefined.

Implementation dependencies

Design
¢+ IMP-1 Isolate implementation dependencics.
» IMP-2 Avoid optional language features.
Pragmas

* IMP-3 Avoid using pragmas.
e IMP-4 If pragmas are uscd, isolatc and thoroughly document them.

1/0

» 10-1 Encapsulate 1/O uscs into a separate 1/0) package.
* 10-2 Do not rely on NEW_PAGE.

* 10-3 Document implementation dependent procedures.
* 10-4 Close files before a program completes.

* 10-5 Do not input or output access types.

1. Introduction 3

2. Coding Guidelines

General Design Guidelines

The following quote sums up the general design issues:

Reusability is first and foremost a design issuc. If a system is not designed with rcusability in mind,
component interrelationships will be such that rcusability cannot be attained no matter how
rigorously coding or documentation rules are followed [AUSNIS8S.]

Many of the design guidelines listed here are simply good software engineering principles. Ilowever, the
reverse is not necessarily true; simply following good softwarc engineering principles will not always lead to
reusable software [AUSNI8S].

Design Guidelines on Generality and Completeness: Designing for generality means making the
component easy to adapt to new situations.

Efficiency should be considered when designing for generality. Often algorithms exploiting special properties
of a problem may be more efficient than algorithms meant to solve a more general problem.

Completeness means that components should have all functions and operations for current and future needs.
Ideally, each component should contain all of the functionality that can be associated with such a
component.

Obviously, it is impossible to achicve this for any component, but completencss is still a useful goal. To
enhance reusability, components should be made as complete as is practical. Completeness causcs
development effort to be spent on features not needed for the current project, but probably needed on future
projects. It should be tempered by development cost, benefits provided by the component, and likelihood of
use.

To achieve generality and completeness, the following guidclines should be followed.

DES-1 Make Cohesion High Within Each Component: Cohesion is the degree to which the statements in a
component form a cohcrent whole. ‘The most coherent components do just one thing, whether it be
manipulating an object or performing a function.

Although not essential for reuse, cohesion is a desirable attribute, because components with high cohesion
are likely to be easier to understand and more tailorable, since related code will tend to concentrate in one
place.

Cohesion is not measurable, except by inspection. According to [STIVIE74] there are several layers of
cohesion, listed here from lowest to highest.

Coincidental cohesion The module docs tasks that are related looscly or not at all.
Logical cohesion The tasks are related in some logical way.
Temporal cohesion The tasks are related in some way and must be done in the same time span.

Communicational cohesion All processing clements of a task refer to the same sct of input or output data.
Sequential cohcsion Output data from onc clement of the module is input for the next clement.

Functional cohesion All clements of a module are related to performing a single function.

2. Coding Guidclines 4

In this scheme, low levels of cohesion should be avoided as much as possible. Middle levels of cohesion are
about as good as high‘levcls. In practice, it is not necessary to improve the cohesion of a component once it
is in the middle range.

[EMBILES87] suggests another way to measure cohesion, by the absence of four strengths -- separable,
multifaceted, non-delegation, and concealed. These are defined as follows for abstract data types (ADTs),
but the ideas can be generalized to all reusable components.

separable strength An ADT part has separable strength if the part exports an operator (function or
procedure) that does not usc a domain of the ADT it exports; or the part has a
logically exported domain of the ADT that no operator of the part uscs; or the part
has two or more logically exported domains whose operators do not share any of
the domains of the ADT.

multifaceted An ADT part has multifaceted strength if it does not have separable strength, and it
exports two or more domains of the ADT. Becausc it is not separable some
operator must share two or more exported domains.

non-delegation An ADT part has non-delegation strength if it has neither separable nor multifaceted
strength, and it has an operator that can be delegated to a more primitive ADT.

concealed An ADT part has concealed strength if it has ncither separable, multifaceted, nor
non-delegation strength and it has a logically hidden ADT.

The above definitions are from [EMBLES7].

DES-2 Make Components as Complete As Possible: Completeness means that components should have
all the functions and operations for current and future needs. Ideally, cach component should contain all the
functionality that can be associated with such as component. This is, of course, impossible in practice, but
minimal guidelines can be established. The following guidelincs [SOMM89] concern specifically

object-orientedcomponents. Each such component should include, either explicitly or implicitly, the
following operations.

1. Operations to create and initialize objects of the abstract type. Thesc operations should be provided
explicitly for limited private types, but can be provided implicitly for all other types.

2. Operations to access and to change the value of cach attribute of the implemented object or type.

3. Operations to assign objects of the implemented type and to test for equality. Again, thesc should be
provided explicitly for limited private types, but can be provided implicitly for all other types.

4. Test functions for every exception the component can raisc.

Furthermore, if the abstract type is a composite type, then the following operations should also be provided.
1. Operations to add and delete objects from the collection.
2. An iterator, which allows each clement to be visited.

3. Functions to obtain information about the attributes of the collection as a whole (such as its size).

Design Guidelines on Interfaces: Well-defined interfaces arc important for reusability. Below are some
guidelines on interface design.

DES-3 Make Coupling Low: Coupling mcasures how much modules depend on one another. 1t depends
on the interfaces between modulces, the data that pass between them, and the control relationships. Coupling
should be as low or loose as possible. This helps make dependencics both clear and isolated, thus making
components easier to reuse.

According to [STEVE74] there are several levels of coupling, listed here from lowest to highest.

2. Coding Guidelines S

VI I

ST O U AP S SO UV

No coupling The modules are independent and do not communicate.
Data coupling Communication is limited to passing simple arguments.

Stamp coupling A variation of data coupling, where part of a data structure is passed, rather than
simple arguments.

Control coupling Data of a control nature are passed. An example is the passing of a control flag.

External coupling ~ Modules are tied to specific external environments. For some modules this may be
unavoidable, but environment dependence should be isolated as much as possible.

Common coupling Modules share data in a global data area.
Content coupling One modules uses the data within the boundary of another module.

In this scheme, coupling should be as low as possible, both for components and for modules making up
components. For some modules it may not be possible to achieve the lower levels of coupling (no coupling,
data coupling). An effort should be made, however, to build modules with coupling as low as possible in
the above scale.

Another way to measure coupling comes from [IEMBLES7]. In this scheme two compilation units are
visibly coupled if one directly accesses the data structures of the other. They are surreptitiously coupled if one
uses undocumented information about the other’s data structures. Finally, they arc loosely coupled if they
are neither visibly nor surreptitiously coupled. In the scheme, the goal is to make components loosely
coupled.

DES-4 Document Each Interface Thoroughly: Well-documented interfaces are important for building
reusable components. This will allow programmers to casily understand ncw code and thus lower the cost
of reuse. To thoroughly document interfaces, do the following.

* For generics, explain each formal.parameter.
* For subprogram, function and task interfaccs, explain each parameter.

» If the interface is unusually complex, describe it thoroughly in a document.
Portability ar< vesign

DES-5 Make All Dependent Components Reusable: A component is not fully reusable unless all the
components it withs are reusable. If a component depends on components that are not reusable, then there
is a potential for portability and tailorability problems. Thus, when submitting a reusable component to the
filtered repository, make sure that all the components it depends on are reusable as well. ‘That is, make sure
that cach component that is depended on complics with the guidelines in this document.

Comments
General Guidelines

COM-1 Make Each Comment Adequate, Concise and Precise: 'This will obviously make the component
more readable and thus easier to tailor.
Specific Kinds of Comments: Thesc guidelines recommend the following kinds of coraments:

» Exception Documentation Blocks and
* Subprogram Specification Cornment Blocks.

Exception documentation blocks are described in < hdref refid = hexbloc>. Subprogram Specification
Comment Blocks are described below.

2. Coding Guidelines 6

COM-2 Document Each Subprogram with a Subprogram Specification Comment Block: A subprogram
specification should clearly state the intended function of the subprogram. To do this, use a Subprogram
Specification Comment Block before each subprogram specification. Give the name of the subprogram and
a description of its function. List specific design details, such as conditions that raisc exceptions. Be sure to
include the conditions that will cause predcfined exceptions to be raised and multiple conditions that can
cause the same exception.

The comment block could appear with a line of asterisks above or below it. Blank lines might also be
placed above the comment block to act as separators. The comment block or part of it could also appear in

the body as subprogram commentary. The following example shows a Subprogram Specification Comment
Block.

-~< STRING_TO_DYN_STRING

-—<

~--< Function:

--< Return a dynamic string given an Ada string

--< Detail:

--< if length (ADA_STRING) > MAX_DYNAMIC_STRING_LENGTH then
--< raise STRING_T00_LONG

--< if ADA_STRING = NULL then

--< return NULL dynamic string
--< if ADA_STRING /= NULL then
-< return a dynamic string representation of ADA_STRING

Declarations and Types
All the guidelines in this section are designed to improve portability or tailorability.
General Guidelines

DEC-1 Avoid Anonymous Types: An anonymous lype is a type without a simple name. Consider the
following example.

Schedule: array (1..5) of Day;

Here the type array (1..5) of Dap has no simple name and is thus an anonymous types. There arc only a
few cascs in Ada where one can crcate anonymous types; array declarations are onc; task declarations are
another. One should avoid anonymous types for several reasons:

* There is no sclf-explanatory type name.

* Using such anonymous types makes qualified expressions impossible. There is no type or subtype to
which the programmer can refer in order to qualify the cxpression.

* Anonymous type impede tailoring because the programmer cannot add assignment statements like the
onc below without creating a common type beforchand.

A,B : array (POSITIVE range MIN .. MAX) of COMPONENT;
begin

-- Some code

A := By -- Produces a compile~time error

end;
DEC-2 Try to Use Limited Private Types: Limited private types help hide design details from the user. Use

limited private types when you want neither equality nor assignment exported. If you want these operators
to be exported, then use private types instead.

2. Coding Guidelines 7

There is one thing that should be kept in mind when using private or limited private types. When limited
private or private types are exported, the privacy requirement “propagates.” That is, any type that uses a

limited private type in its declaration must itself be limited private. Also, any type that uses a private type in

its declaration must itself be either private or limited private.

For example, consider the following situation.

* Package A uses a limited private type for the DYN_STRING.
type DYN_STRING is limited private;

» Package B uses package A and has a data structure that has DYN_STRING as a subcomponent as
follows.

type NUMBER_RECORD is
record
FIELD1 : A.DYN_STRING;
FIELD2 : STACK;
FIELD3 : INTEGER;
end record;

* Package C uses package B and refers to the record of package B.

type TOTAL is
record
ENTRY : NUMBER_RECORD;
TALLY_LIST : INTEGER;
end record;

Since package A declares DYN_STRING as a limited private type, then package B must define the
NUMBER_RECORD as a limited private type. Package C must use TOTAL as a limited private type
because it refers to the NUMBER_RECORD of package B.

This propagation of limited/non-limited private type requirements could cause major rework for packages
being modified to use components that use private types. Thus, we believe that a reuse repository should

store information on cach Ada component on whether the component is based on limited private, private, or

non-private types. This would help users select suitable components.

DEC-3 Use Range Constraints on Numeric Types: For example, instead of
type t1 is digits 5;

code the following:
type t1 is digits 5 range 0.0 .. 100.0;

This causcs the compiler to issue a message if the range cannot be supported. The range constraints should
be meaningful to the application. [BARNI84]

DEC-4 Avoid Predefined and Implementation Defined Types: Avoid declaring objects of predefined types
such as INTEGER, and implementation types such as LONG_INTEGER (from appendix F of each ADA
implementation). Predefined and implementation defined types are not likely to be portable because their
form can vary from Ada implementation to Ada implementation.

DEC-5 Explicitly Specify the Precision Required: Tach floating point or fixed point type should explicitly
specify the precision, using the delta or digits accuracy definition. This will make clear any assumptions

made about accuracy of calculations.

DEC-7 Use Attributes Instead of Explicit Constraints: Consider the following example from [NISSE84].

2. Coding Guidclines

8

O SNV

| RSP SCS

A: array (DISCRETE_TYPE) of F;

for I in DISCRETE_TYPE loop
exit when A(I) < SUM * F'EPSILON;
SUM := SUM + A(I);

end loop;

This example assumes that the series A(1) + A(2) + A(3) + ... converges when all terms are positive.
Because the loop depends on F’s model numbers and not on explicit constraints, all Ada implementations
should have the same accuracy.

DEC-8 Declare invariants as constants

In general, objects should be declared as constants if they are invariant. Declare pi as:
p: constant float :=3,1416;

Do not declare pi as:
p: float :=3.1416;

Eliminated, is the possibility of unintentional change of the invariant value.

For example, declare:
stack_index: stack_index_type := 0; instead of
Do not declare:
stack_index: stack_index_type;
Initialization precludes the use of uninitialized variables. Exceptions to the rule are limited private type

variables which cannot be initialized, and situations in which performance reasons preclude initialization. In
the performance category, use comments to explain where the variable is set.

. Guidelines for Arrays

ARR-1 Explicitly Declare a Type to Use in Defining Discrete Ranges: Usc explicitly declared types for
discrete ranges. That is, usc)

type DISCRETE_RANGE is range 1..TABLE_SIZE;
type TABLE is array (DISCRETE_RANGE) of ELEMENT_TYPE;

instead of
type TABLE is array (1..TABLE_SIZE) of ELEMENT_TYPE;
PAPPASS, p. 28

This provides several benefits. There will be fewer logic crrors when components arc tailored, because the
compiler will have alrcady caught them when it checked for type inconsistencies. Also, the code will be
more portable, since the compiler can sclect the best internal representation for the numeric type requested
by the range declaration.

Unfortunately, using explicitly declared types for integer discrete ranges docs not always lead to casy to read
code. Type conversions may be necded to convert among explicitly declared types. The combination of
long type names and required type conversions results in long multi-line Ada statements that are hard to
read. Nevertheless, we belicve the advantages of using cxplicitly declared types for integer discrete ranges
outweigh the disadvantages.

2. Coding Guidelines 9

ARR-2 Do not hard code array index designations: 1o not hard code array index designations, as below.
type TABLE is array (1..50) of ELEMENT TYPE;

Use types or subtypes instead, because the additional declaration will make the code more self-documenting
and thus more tailorable. The upper or lower bound may be an index that will change at some time. The
subtype or type declaration will allow the change to be made once instead of many times throughout the
program.

Names

NAM-1 Use Descriptive Identifier Names: Usc descriptive identifier names to promote readability and
self-documentation. Descriptive identifier names make the code clearer. Names should be as long as
necessary to provide the needed information and to promote readability. They should be considered part of
the documentation of the component.

NAM-2 Keep Identifier Names Less Than 80 Characters Long: Keep identifiers less than 80 characters
long, because some Ada implementations use 80 characters as the maximum identificr length. Furthermore,
some display devices are limited to 80 characters, since they lack the ability to format larger strings.

NAM-3 Do Not Overload Names from Package STANDARD: Ada names predefined in package
STANDARD should not be redefined or ‘overloaded’. [RYMERS6], p. 5 This keeps the reader from
confusing the overloaded names with the names predefined in package STANDARD. There is an exception
to this rule -- it is permissible to overload the names of operators.

Naming Conventions: Besides the abovc guidclines, there is no specific naming convention for identifiers in
these guidelines. It is assumed that a component retricval system will exist which will provide tools to
analyze component information. The tools will have powerful analytical capabilities, so that a naming
convention will not improve the analysis. It will only place unnecessary constraints on the programmer.
However, if the component retrieval tools are not as powerful as anticipated, a naming convention may
prove uscful, and one should be corsidered.

Statements

Loop Statement

STA-1 Use Explicitly Declared Types for Integer Ranges in the 1oop Statement: This will improve
portability. If no type name is specificd, INTEGER is used as the default, which can result in a discrete
range being invalid under some Ada implementations. By using type designations, the logic can be more

independent of the data.

The following example shows a loop range that should not be used.
for T in 1..MAX_NUM_APPLES ...

end loop;
Instcad, do the following.

type APPLE_COUNT_TYPE is range 1..MAX_NUM_APPLES;
for I in APPLE_COUNT_TYPE loop ...

end loop;

2. Coding Guidelines 10

LS S I

STA-2 Exit Basic LOOPs only via Conditional
Exit and Return Statements.

Implicitly, this eliminates unconditional returns, planned Exceptions, and Goto statements as methods for
exiting basic Loops.

For example, use:

clear_stack:
loop
hegin
pop;
exception
when stack_empty_condition =>
exit clear_stack;
end;
end Toop clear_stack;

Do not use:

clear_stack;

loop

exit clear_stack when stack_is_empty;
pop;

end Toop clear_stack;

Exceptions used to alter the flow of control in non-crror conditions, inhibit maintainability and thus
portability. Gotos should be reserved for atypical situations because they inhibit maintainability. An
Unconditional exit from a basic Loop implies the basic Loop structure is meaningless.

If Statement

STA-3 Use Elsif for Nested If Statements: This rcduces the nesting levels of the if statements, giving the
code a clean, uncluttered appcarance. It also emphasizes the equal status of cach if statcment.

The following is an example from BARNES4, p. 50 of nested if statcments.

if ORDER = LEFT then
TURN_LEFT;
else
if ORDER = RIGHT then
TURN_RIGHT;
else
if ORDER = BACK then
TURN_BACK;~
end if;
end if;
end if;

»

The example below shows the above example with <hp2>elsif < /hp2>s.

if ORDER = LEFT then
TURN_LEFT;

elsif ORDER = RIGHT then
TURN_RIGHT;

elsif ORDER = BACK then
TURN_BACK;

end if;

2. Coding Guidetines 11

e b e BN e v e Fr Bar ®aaN L ah S el Naais

PP NV SR e R VEPIUSE NPT P

PRI NN

Case Statement

STA-4 Avoid Using the When Others Clause as a Shorthand Notation: The when others clause of the case
statement should not be used as a shorthand to handle all cases that have not been listed. Instead, explicitly
handle each case and omit the when others clause. If the component is later modified to add more values to
the data type, this will call attention to the fact that the new values are not handled in the case statement. If
the when others clause was used, the new data values would be handled by this clausc and the operation on
the data might be incorrect.

If there is a long list of conditions to be enumerated, use ranges and vertical bars to simplify listing all
possible values as in the following example:

begin
case X is
when AA =
-~ Some stuff
when DD =>
-- Other stuff
when BB..CC | EE..ZZ =>
-- The Other other stuff
end case;
end;

Subunits
General Guidelines

SUB-1 Use Named Constants for Parameter Defaults: Usc named constants as paramcter defaults
whenever they would help the reader to better understand the code. For example, this

procedure READ (VALUE : out ELEMENT_TYPE;
GROUP : in TAG_GROUP_TYPE :

DEFAULT_GROUP)
is easier to understand than this.

procedure READ (VALUE : out ELEMENT_TYPE;
GROUP : in TAG_GROUP_TYPE :

0);

SUB-2 Named Parameters: We do not belicve that a sct of guidelines should require named parameter
association. This should be a user-selectable option with an intelligent formatter. Until such formatters are
available, the following arc some reccommendations on the subject.

1. If there is morc than one parameter in the called subprogram, then use named parameter association.
'This will make the interface clear to the user and make the code self-documenting, particularly when the
component user is not supplying all of the possible parameters.

2. If the called subprogram only has one parameter, then use of named parameters is up to the coder. The
determining factor should be whether use of the named paramecter association wili improve readability.
Using parameter names in the interface of single parameter function calls particularly hinders readability.

SUB-3 Make Components Complete: Reusable components should be as complete as practical, meaning
that the component ideaily has all opcrations to manipulate the given object. For example, a stack package
should have such operations as PUSH, POP, CLEAR_STACK and iS_IPMPTY. This insures that any
stack operation needed in the future will alrcady exist and not need to be coded.

Admittedly, this guideline cannot be fully realized in practice. Yet the goal of complcteness is still uscful as
something to strive for.

2. Coding Guidelines 12

PR PO SNVEPAN I

@ ae e R Le Rt e dae e

et e

The guideline is easier to follow if standard interfaces have been established. For example, there is a
standard interface for stack packages, then it will be trivial to inspect a particular stack package to tell
whether it provides all the required operations.

SUB-4 Write Each Module So It Has High Cohesion: Cohesion is a measure of the degree to which the
statements in a component form a whole. The most coherent components do just one thing, whether it be
manipulating an object or performing a function. Cohesion should be maximized whenever possible.

One way to achieve high cohesion is to use an object-oriented design. Such a strategy makes it casy to
detect low cohesion. STDEN86
SUB-5 Use Information Hiding: There arc three guidelines here.

« Only place in the specification section those declarations that must be scen externally.

* Only with those compilation units that are rcally needed. Only if the specification nceds such visibility
should the context clause appear in the specification; otherwisc it should appear in the body. A tool
could be written to catch unnceded withs.

 Use private and limited private types to promote information hiding.
The rationale comes from the good software engincering practice of minimizing the amount of information
visible to the outside world.

Guidelines on Subprograms

SUB-6 Use Descriptive Named Constants as Return Values: Named constants should be returned
whenever they would help the reader to understand the code. For example, it is more informative to return
the named constant NOT_FOUND than to return the value -1.

Exception Handling

As stated earlier in this document, good exception handling is important to software reuse for several

reasons.
» Components with good error / exception handling have safety built in.
« Errors are isolated and well-documented.
* The way interfaces work is made clear. There are fewer hidden assumptions.

» The users have the freedom to decide whether to propagate exceptions further, to retry the operation
that raised the exception, to abandon the operation, or to continuc regardless.

+ Good cxception handling makes components more tailorable and thus more reusable.
Exception Handling Design

EXP-1 Avoid the When Others Construct with the Null Statement: Usc of the null statement suggests that
the exception is not used for an abnormal condition.

2. Coding Guidelines 13

i N

begin
loop

raise MISCELLANEQUS_ERROR;

end;
exception
when others =>
null;
end;
-~ rest of normal program code

In the above example a raise statement is used 1o cxit the loop and to continue exccuting normal control
flow. This implies that there ncver was an abnormal condition.

EXP-2 Avoid pragma SUPPRESS: The Ada Language Reference Manual ADAS3 docs not require that
pragma SUPPRESS be implemented. Pragma SUPPRESS does not guarantee that exceptions will not be
propagated to a unit for which exception suppression is in effect. ‘The exccution of a program is erroneous if
an exception occurs while pragma SUPPRESS is in cffect.

EXP-3 Handle Exceptions Close to Where They Are First Raised: This gives the cxception handler access

to local data, which can be used to respond to the cxception. It also avoids losing visibility to the exception
name.

When an exception is propagated to a scope outside its visibility, its name is lost. The exception can only be
handled by a when others handler. Such exceptions might be unwittingly handled by a handler that was
never intended to handle the exception.

Below is an example of an exception handler making usc of local data.
package body SEQUENTIAL_ACCESS_METHOD is

CURRENT_RECORD : RECORD_IDENTIFIER := START_OF FILE;

procedure GET (FILE : in FILE_TYPE;
REC : out RECORD_TYPE) is
VALUE : RECORD_TYPE;
begin

VSAM.VGET (CATALOG => FILE,
INDEX => CURRENT_RECORD + 1,
DATA => VALUE);
exception
when DEVICE_ERROR =>
ERROR_10.LOG("Error Occurred Reading Record" amp
RECORD_IDENTIFIER' IMAGE (CURRENT_RECORD + 1));

end GET;
end SEQUENTIAL_ACCESS_METHOD;

EXP-4 Imbed Potential Elaboration Exceptions in a Erame: Unlcss special provisions are made,
claboration exceptions are not handled in the unit being claborated. Consider the following example.

package ELABORATION_EXCEPTION_PKG is
S : STRING (1..2) := "Causes Constraint_Error";
end ELABORATION_EXCEPTION_PKG;

The Constraint_Error exception that is gencrated is not handled inside the package; it is propagated out.
The solution is to imbed potential claboration exceptions in a frame. To do this, do the following.

2. Coding Guidelines 14

et e s €k et b

* Move declarations to declare blocks inside executable regions,
* Do initializations inside executable regions, and

+ Encapsulate initializations within a subprogram to take advantage of Ada’s strong typing, as in the
following example.

with INITIALIZATION_PKG;
package ELABORATION_EXCEPTION_PKG is

S : INITIALIZATION_PKG.NAME_TYPE := INITIALIZATION_PKG.SET_NAME;
end ELABORATION_EXCEPTION_PKG;

package INITIALIZATION_PKG is
subtype NAME_TYPE is STRING(1..2);
function SET_NAME return NAME_TYPE;
-- guarantees no CONSTRAINT_ERROR
end INITIALIZATION_PKG;

Exception Propagation

EXP-5 Do Not Propagate an Exception Where Its Name Is Not Visible: Do not propagate an exception
beyond where its name is visible. Otherwise, it can only be handlcd by a when others handler.

EXP-6 Do Not Propagate Predefined Exceptions Without Renaming Them: Predcfined exceptions have no
corresponding raise statement in the source code, so it is not always obvious that an exception can be
propagated. Predefined cxceptions can be raised by many operations, making them difficult to locate.
Renaming predefined expressions makes it sasier to pinpoint the cxact cause of each exception. For
example, the predefined exception STORAGE_ERROR might be propagated as MEMORY_FULL.

Use of Exception Handling

EXP-7 Do Not Execute Normal Control Statements from an Exception Handler: Only use cxception
handling for abnormal control flow, not for normal control.

Below is an example of poor use of exception handling.

begin

loop

TEXT_10.GET(DATA_FILE,DATA_VALUE);

end Yoop;
exception

when TEXT_I0.END_ERROR(DATA_FILE) =>

-- execute the rest of the program here

end;

In contrast, the following shows equivalent code without the use of an exception handler.

while not TEXT_10.END_OF_FILE(DATA_FILE) loop
TEXT_10.GET(DATA_FILE,DATA_VALUE);

e

end loop;
-- execute the rest of the program here

Exception Documentation

2. Coding Guidclines 15

SRS

EXP-8 Document All Exceptions Which Will Be Propagated from an Opcration in an Exception
Documentation Block: An Exception Documentation Block shows which operations raise which exceptions
under what conditions. In this block, describe all the conditions that cause each exception to be raised,
including predefined exceptions. This will help other developers in making their designs complete.

Be sure to clearly associate each exception with every operation where the exception can be raised. If the
same operation can raise an exception for different rcasons, record each reason separately.

The following is an example of an Exception Documentation Block.
STRING_TOO_LONG : exception;

-~ INSERT the size of the string with the
-- insertion exceeds MAX_DYNAMIC_
-- STRING_LENGTH

-- REPLACE the size of the string with the
- replaced part exceeds MAX_DYNAMIC_
-- STRING_LENGTH

EXP-9 List all Conditions That Raise Exceptions in Subprogram Specification Comment Blocks: This
includes the conditions that will cause predefined exceptions to be raised and includes multiple conditions
that can cause the same exception.

Exception Handling Parameter Usage

EXP-10 Ensure That Out Parameters Cannot Be Undefined Upon Retumn from a Subprogram If an
Exception Occurs: Never depend on the valuc of out parameters or return values when designing a handler
response. When an cxception occurs while evaluating the right side of an expression, then the current value
of the variable stays the same. The values of scalar out parameters which are not updated are undefined.
Thus, the exception handler should sct the values of scalar parameters before returning.

Implementation Dependencies
Design Considerations

IMP-1 Isolate Compiler, Operating System and Machine Dependencies: 'To make components portable,
avoid optional language features and Ada implementation dependencies. Where this cannot be done, isolate
such uscs, so uscrs can plug in new versions casily. Document all such uscs. Both cncapsulation and
documentation will reduce the cffort to port a component to a new implementation.

Write code to ignore details of underlying implementations. Components should be designed without
reference to the surrounding environment. Contact between a component and its environment should occur
through explicit parameters and explicitly invoked subprograms. PAPPASS, p. 7

IMP-2 Avoid Optional Language Features: For cxample, avoid using UNCIHHECKED_DEALILOCATION
and UNCHECKED_CONVERSION. These two procedures arc optional and implementation dependent.
If you use these procedures, document their use. Environment_Imposed_Restrictions:[hpl. and
Compiler_Dependent_Restrictions.

Pragmas

2. Coding Guidelines 16

IMP-3 Avoid Using Pragmas: Pragmas are instructions to a specific compiler. Pragmas generally imply
environmental depenendencies and, therefore, are a negative portability indicator. For example, Pragma
INTERFACE implies the existence and dependence of a component on non-ADA code. Pragma
ELABORATE is needed to force elaboration order for correct compilation. [Elaboration order is compiler
dependent and may not be preserved with another compiler.

Pragma INTERFACE may be needed to specify interfaces with subprograms of other languages. Pragma
ELABORATE may be needed to insure that a program is correctly elaborated no matter what compiler is
used, since elaboration order varies from compiler to compiler. Ilowever, take care that pragma FLABORATE
is essential and not needed because the component is overly complex.

IMP-4 If Pragmas Are Used, Isolate and Thoroughly Document Them: If they must be used, they should be
isolated as much as possible.

Those components which use pragmas should be documented, pointing them out and describing their effects.
Pragmas.

For example, use of pragma INLINE in a reusable component should be documented. Iis use can force the
user’s code to depend on the body of the reusable component. Since this cffect is usually unexpected, take care
to insure that the reuser is aware of the compilation issues caused by it.

Input and Output
General Guidelines

10-1 Encapsulate 1/0 Uses Into a Separate 1/0O Package: All inputjoutput utilities should be isolated into
110 packages. This will make it easy for users to adapt the component to different machines and operating
systems.

Guidelines on Specific 1/0 Procedures and Functions

10-2 Do Not Rely on NEW_PAGE: The Ada language standard does not specify the value of a page
terminator. Thus, the control characters may be non-portable across printers. One solution is to always direct
output to a file, which can then be filtered and altered to suit the device the output is ultimately destined for.

10-3 Document Implementation Dependent Procedures: Use of the following procedures could result in
portability problems. Dependencies on such procedures should be documented. Portability_Restrictions.
* COL -- Depends on the implementation-defined subtype POSITIVIE_COUNT.

* DIRECT_10.READ -- Reads from an index whose range POSITIVIE_COUNT is implementation defined.
The DIRECT _I0.WRITE procedure could also cause similar problems.

o ENUMERATION_10.GET -- Returns an out parameter of the predefined types POSITIVE or
NATURAL to specify the LAST character input. It also has a WIDTH parameter of the
implementation-defined type FIELD.

o FIXED_I0.GET -- Returns an out parameter of the predefined types POSITIVE or NATURAL to specify
the LAST character input. It also has a WIDTI! parameter of the implementation-defined type FIELD.

o FIXED_IO.PUT -- llas a WIDTI parameter of the implementation-defined type FIELD.

o FLOAT_10.GET -- Returns an out parameter of the predefined types POSITIVIE or NATURAL to
specify the LAST character input. It also has @ WIDTII parameter of the implementation-defined type
FIELD.

o FLOAT_10.PUT -- Ilas a WIDTI{ parameter of the implementation-defined type FIELD.

2. Coding Guidelines 17

* GET_LINE -- Returns an out parameter of the predefined types POSITIVE or NATURAL to specify the
LAST character input.

* INDEX -- Uses an index whose range POSITIVIE_COUNT is implementation-defined.

» INTEGER_IO.GET -- Returns an out parameter of the predefined types POSITIVE or NATURAL to
specify the LAST character input. It also has a WIDTH parameter of the implementation-defined type
FIELD.

e INTEGER_IO.PUT -- Has a WIDTH parameter of the implementation-defined type FIELD.
* LINE -- Depends on the implementation-defined subtype POSITIVE_COUNT.

* LINE LENGTH -- Depends on the implementation-defined type COUNT, whose upper bound varies with
each implementation.

* PAGE -- Depends on the implementation-defined subtype POSITIVE_COUNT.

* PAGE_LENGTH -- Depends on the implementation-defined type COUNT, whose upper bound varies with
each implementation.

» SET_COL -- Depends on the implementation-defined subtype POSITIVE_COUNT.
* SET_LINE -- Depends on the implementation-defined subtype POSITIVI._COUNT.
» SET_INDEX -- Uses an index whose range POSITIVE_COUNT is implementation-defined.

o SET_LINE_LENGTI -- Depends on the implementation-defined type COUNT, whose upper bound varies
with each implementation.

» SET_PAGE_LENGTH -- Depends on the implementation-defined type COUNT, whose upper bound
varies with each implementation.

» SIZE -- Uses an index whose range POSITIVE_COUNT is implementation-defined.
[MATTHS7b, p. 2]

Furthermore, using procedures SKIP_LINE and NEW _LINE to skip more than one line at a time may lead to
portability problems, since they depend on the implementation-defined subtype POSITIVE_COUNT. Skipping
one line will not cause any problems; however, skipping muldtiple lines may not be portable depending on the
constraint set by the Ada implementation. [MATTH87b, p. 2]

File Handling

10-4 Close Files Before a Program Completes: Different Ada implementations handle unclosed files in
different ways. The state of unclosed files after program termination is undefined. To increase the reusability
of a component, close all files before a subprogram terminates normally or abnormally. Be sure to verify that a
file is open before closing it so that the exception STATUS_IERROR is not raised.

1/O of Access Types
10-5 Do Not Input or Output Access Types: The effect of 1/0 of access types is undefined. If used, it may
lead to components that are not portable. To output an object pointed to, output the object. To output the

address of an object pointed to, output the address of the object using SYSTEM.ADDRESS. [MATTHS87b, p.
11 Document the use of SYSTEM.ADDRESS.

2. Coding Guidelines 18

e

3. References

There are numerous coding guidelines available, particularly for Ada. The following is a list of references for
the STARS reusability coding guidelines.

[ADAS3]

[AHO74]

[AUSNISS]

[BARNES4]

[BENTLSS]

[BOOCHS7]

[EMBLES7]

[EVBSES7]

[1BM0340)

[IBM0360]

[IBM0370]

[1BM0380]

[IBM0460]

[IBM0520]

Reference Manual for the Ada Programming Language, ANSIIMIL-STD-18/54-1983,
February, 17 1983.

Aho, A. V., J. E. Hopcroft and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Readding, Mass.: Addison-Wesley, 1974.

Ausnit, Christine, Christine Braun, Sterling Fanes, John Goodenough, Richard
Simpson, Ada Reusability Guidelines, SofTech, Inc., April 1985.

Barnes, J.G.P., Programming in Ada, 2nd edition. Addison-Wesley Publishers
Limited, 1984.

Bentley, Jon, “Programming Pearls,” Communications of the ACM, vol. 28, no. 7 July
1985.

Booch, Grady, Software Components With Ada. The Benjamin|Cummings Publishing
Company, Inc., 1987.

Embley, David W. and Woodfield, Scott N., “Cohesion and Coupling for Abstract
Data Types.” Proceedings, Sixth Phoenix Conference on Computers and
Communications, Phoenix, Arizona, February 1987.

EVB Software Engineering, Inc., Creating Reusable Ada Software, 1987.

IBM Systems Integration Division, Informal Technical Report on Findings During the
Rebuild of Common Capabilities, CDRI. Sequence No. 0340, I'ebruary 19, 1989.

IBM Systems Integration Division, Reusability Guidelines, CDRL Sequence No. 0360,
December 17, 1988.

IBM Systems Integration Division, Reusable Component Data Analysis, CDRI
Sequence No. 0370, February 10, 1989.

IBM Systems Integration Division, Consolidated Reusability Guidelines, CDRL
Sequence No. 0380, March 2/, 1989.

IBM Systems Integration Division, Repository Guidelines and Standards, CDRL
Sequence No. 0460, March 17, 1989.

IBM Systems Integration Division, Long Term Configuration Management Plan for the
STARS Repository, CDRI. Sequence No. 0520, March 17, 1989.

3. References 19

[IBM0710]

[MATSUS4]

[MATTHS7a]

[MATTHS7b]

[MCILR68]

[MENDASS]

[NISSES4]

[PAPPASS]

JRACINSS]

JROSENS7]

JRYMERS6]

[SOMMS9]

ISTDENSS]

JSTEVE]

JUNISYS0340]

IBM Systems Integration Division, DT Definition: Internal Documentation, CDRL
Sequence No. 0710, January 16, 1989.

Matsumoto, Y., “ Experiences in Promoting Reusable Software Presentation in Higher
Abstract Levels,” IEEL Transactions on Scftware Engineering, vol. SE-10 (5),
September 1984.

Matthews, E. R., IBM Federal Systems Division Guide for Reusable Ada Components
(Draft), September 17, 1987.

Matthews, . R., “Observations on the Portability of Ada 1/0,” ACM SIGAda Letters,
vol. VII, no. 5, September|October 1987.

Mclilroy, M. D., “Mass Produced Software Components,” Repori on a conference by
the NATO Science Committee, Garmisch, Germany, October 7-11, 1968.

Mendal, Geoffrey O., “Three Reasons to Avoid the Use Clause,” ACM SIGAda
Letters, vol. V1II, no. |, January/February 1988.

Nissen, John and Peter Wallis, Portability and Style in Ada, Cambridge University
Press, 1984.

Pappas, Frank, Ada Portability Guidclines, SofTech, Inc., March 1985.

Racine, Roger, “Why the Use Clause is Beneficial,” ACM SIGAda Letters, vol. VIII,
no. 3, Map|/June 1988).

Rosen, J. P., “In defense of the ‘use’ clause,” ACM SIGAda Letters, vol. V11, no. 7,
November|December 1987.

Rymer, John and McKeever, Tom., The FSD Ada Style Guide, 1986.
Sommerville, 1., Software Engincering, 3rd. edition, Addison-Wesley, 1989.

St. Dennis, R., P. Stachour, I:. Irankowski, and I.. Onuegbe, “Measurable
Characteristics of Reusable Ada Software,” ACM SIGAda Ada Letters, vol. VI, no. 2,
March|April 1986.

Stevens, W. P., G.J. Myers, and 1. .. Constantine, “Structured design.” 1BM
Systems Journal, 1974, no. 2.

Unisys Corporation, Draft Technical Report on Reusability Guidelines, CDRL 0340,
February 14, 1989.

3. References 20

S 2 SO S Ay UUIr S DU S [SNPOP SURI NP RPN e

o

4. Glossary

The following terms and definitions describe component attributes and design issues, as used in these
guidelines.

anonymous type A type without a simple name.

cohesion A measure of the degree to which the code in a module forms a coherent whole.

contact The contact is the person in the producing company who is the ‘point of contac!’ for that particular
part or product. Point of contact refers to the person who is familiar with the product, and can cither answer

questions about it, or can refer people to someone who can answer them.

coupling A measure of how much components or modules depend on each other. Coupling depends on the
interfaces between modules, the data that pass between them, and the control relationskips.

dynamic stack The stack of calls made at runtime.
exception documentation block A comment that documents an exception.

frame An Ada language construct that surrounds an exception handler. A frame can be a block statement or
the body of a subprogram, a package, a task, or a generic.

functional completeness 7'he idea that components should have all functions and operations required for
current and future needs.

independence The ability of a component to be used with different compilers, operating systems, machines and
applications than those for which it was originally developed. Independence is closely related to portability.

maintainability 7/e ease of modifying a
component, whether it be to meet particular needs or to fix bugs.

order (of an algorithm) A measure of
the computational efficiency of an algorithm, expressed in terms of the frequency of some key operation. Ior
more information, see AI1074.

overloading The property whereby Ada literals, operators, identifiers, and aggregates can have unambiguous
alternative meanings.

platform Platform refers to the architecture for the system for which the product is intended (hardware,
operating spstem, and Ada compiler) Some products may be intended for several different platforms.
Platforms listed should also indicate whether they are host platforms, target platforms, or both.

portability 7he ability of an application or component to be used again in a different target environment than
the one it was originally built for. The phrase target environment may be defined broadly to include operating
systems, machines, and applications. To be ported effectively, components may need to be tailored to the
requirements of the new target environment. See also reusability and independence.

reliability The extent to which a component performs as specified. A reusable component performs
consistently with repeated use and across environments (that is, operating sypstems and hardware).

4. Glossary 21

reusability The ability to reuse a software component or to use it repeatedly in applications other than the one
Sfor which it was originally built. In order to be effectively reused, the component may have to be tailored to
the requirements of the new application. See also portability.

subprogram specification comment block A comment block that accompanies a subprogram specification,
giving its name and a description of its function.

tailorability The ease of modifying a component to meet particular needs. It should be distinguished from
maintainability, which includes tailorability, but also includes the idea of corrective maintenaice (fixing bugs).

4. Glossary 22

Index 23

